Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(9): 3042-3058, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582960

RESUMO

Although memory functions of immune cells characterized by increased resistance to subsequent infections after initial pathogen exposure are well-established, it remains unclear whether non-immune cells, especially tissue-resident stem cells, exhibit similar memory mechanisms. The present study revealed that detrimental effects of initial viral antigen exposure (human papillomavirus [HPV]) on diverse stem cell functions were significantly exacerbated upon subsequent secondary exposure both in vitro and in vivo. Importantly, endometrial stem cells exhibited robust memory functions following consecutive HPV antigen exposures, whereas fully differentiated cells such as fibroblasts and vesicular cells did not show corresponding changes in response to the same antigen exposures. Deficiency of angiopoietin-like 4 (ANGPTL4) achieved through small hairpin RNA knockdown in vitro and knockout (KO) mice in vivo highlighted the critical role of ANGPTL4 in governing memory functions associated with various stem cell processes. This regulation occurred through histone H3 methylation alterations and PI3K/Akt signaling pathways in response to successive HPV antigen exposures. Furthermore, memory functions associated with various stem cell functions that were evident in wild-type mice following consecutive exposures to HPV antigen were not observed in ANGPTL4 KO mice. In summary, our findings strongly support the presence of memory mechanism in non-immune cells, particularly tissue-resident stem cells.


Assuntos
Proteína 4 Semelhante a Angiopoietina , Antígenos Virais , Endométrio , Papillomavirus Humano , Células-Tronco , Camundongos , Endométrio/citologia , Células-Tronco/citologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Vacinas contra Papillomavirus/imunologia , Papillomavirus Humano/imunologia , Antígenos Virais/imunologia , Memória Imunológica , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Análise da Expressão Gênica de Célula Única , Epigênese Genética , Transdução de Sinais , Técnicas de Inativação de Genes , Fenômenos Fisiológicos Celulares
2.
Microvasc Res ; 149: 104570, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315777

RESUMO

OBJECTIVES: Despite advances in the maintenance of arteriovenous fistulas (AVFs), the patency rates remain suboptimal. Most AVFs fail due to outflow vein stenosis; however, the underlying mechanism of AVF stenosis remains unclear. The present study aimed to identify key factors associated with AVF outflow stenosis. METHODS: We obtained gene expression profiling data for the outflow vein of AVF from three Gene Expression Omnibus database datasets (GSE39488, GSE97377, and GSE116268) and analyzed the common differentially expressed genes (DEGs). We evaluated a common DEG in an aortocaval mouse model and the stenotic outflow veins of AVFs collected from patients. Furthermore, we isolated vascular smooth muscle cells (VSMCs) from the inferior vena cava (IVC) of wild-type (WT) and osteopontin (Opn)-knockout (KO) mice and assessed the proliferation of VSMCs following stimulation with platelet-derived growth factors (PDGFs). RESULTS: OPN was the only common upregulated DEG among all datasets. OPN was expressed in the medial layer of the outflow vein of AVF in aortocaval mouse models and co-stained with the VSMC marker (α-smooth muscle actin). OPN expression was markedly increased in the VSMCs of stenotic outflow veins of AVF collected from patients undergoing hemodialysis compared to presurgical veins acquired during AVF formation surgery. PDGF-induced VSMC proliferation was significantly increased in the VSMCs isolated from the IVC of WT mice but not in those isolated from the IVC of Opn-KO mice. CONCLUSIONS: OPN may be a key gene involved in VSMC proliferation in the AVF outflow veins and a therapeutic target to improve the AVF patency rate.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Osteopontina/genética , Osteopontina/metabolismo , Constrição Patológica/metabolismo , Fator de Crescimento Derivado de Plaquetas , Proliferação de Células , Fístula Arteriovenosa/metabolismo
3.
Cell Commun Signal ; 21(1): 323, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950232

RESUMO

BACKGROUND: Although acetylsalicylic acid has been widely used for decades to treat and prevent various diseases, its potential effects on endometrial receptivity and subsequent pregnancy rates are still controversial due to conflicting data: many reports have shown positive effects of acetylsalicylic acid, whereas others have found that it has no effect. Furthermore, the direct effects of acetylsalicylic acid on various functions of normal endometrial cells, especially endometrial stem cells, and their underlying molecular mechanisms have not yet been proven. Recently, studies have revealed that a reduced number of active stem/progenitor cells within endometrial tissue limits cyclic endometrial regeneration and subsequently decreases pregnancy success rates, suggesting that endometrial stem cells play a critical role in endometrial regeneration and subsequent endometrial receptivity. METHODS: We assessed whether aspirin treatment can inhibit various endometrial stem cell functions related to regenerative capacity, such as self-renewal, migration, pluripotency/stemness, and differentiation capacity, in vitro. Next, we evaluated whether SERPINB2 regulates the effects of aspirin on endometrial stem cell functions by depleting SERPINB2 expression with specific shRNA targeting SERPINB2. To further investigate whether aspirin also inhibits various endometrial stem cell functions in vivo, aspirin was administered daily to mice through intraperitoneal (i.p.) injection for 7 days. RESULTS: In addition to its previously identified roles, to the best of our knowledge, we found for the first time that acetylsalicylic acid directly inhibits various human endometrial stem cell functions related to regenerative capacity (i.e., self-renewal, migration, differentiation, and capacity) through its novel target gene SERPINB2 in vitro. Acetylsalicylic acid exerts its function by suppressing well-known prosurvival pathways, such as Akt and/or ERK1/2 signaling, through a SERPINB2 signaling cascade. Moreover, we also found that acetylsalicylic acid markedly inhibits regenerative capacity-related functions in endometrial stem cells within tissue. CONCLUSIONS: We have found that acetylsalicylic acid has diverse effects on various endometrial stem cell functions related to regenerative capacity. Our findings are a critical step toward the development of more effective therapeutic strategies to increase the chances of successful pregnancy. Video Abstract.


Assuntos
Aspirina , Células-Tronco , Gravidez , Feminino , Animais , Camundongos , Humanos , Aspirina/farmacologia , Aspirina/metabolismo , Endométrio/metabolismo , Transdução de Sinais , Diferenciação Celular
4.
Inflamm Res ; 72(4): 769-782, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36813915

RESUMO

BACKGROUND: The mechanism by which incompletely absorbed fructose causes gastrointestinal symptoms is not fully understood. In this study, we investigated the immunological mechanisms of bowel habit changes associated with fructose malabsorption by examining Chrebp-knockout mice exhibiting defective fructose absorption. METHODS: Mice were fed a high-fructose diet (HFrD), and stool parameters were monitored. The gene expression in the small intestine was analyzed by RNA sequencing. Intestinal immune responses were assessed. The microbiota composition was determined by 16S rRNA profiling. Antibiotics were used to assess the relevance of microbes for HFrD-induced bowel habit changes. RESULTS: Chrebp-knockout (KO) mice fed HFrD showed diarrhea. Small-intestine samples from HFrD-fed Chrebp-KO mice revealed differentially expressed genes involved in the immune pathways, including IgA production. The number of IgA-producing cells in the small intestine decreased in HFrD-fed Chrebp-KO mice. These mice showed signs of increased intestinal permeability. Chrebp-KO mice fed a control diet showed intestinal bacterial imbalance, which the HFrD exaggerated. Bacterial reduction improved diarrhea-associated stool parameters and restored the decreased IgA synthesis induced in HFrD-fed Chrebp-KO mice. CONCLUSIONS: The collective data indicate that gut microbiome imbalance and disrupting homeostatic intestinal immune responses account for the development of gastrointestinal symptoms induced by fructose malabsorption.


Assuntos
Diarreia , Frutose , Camundongos , Animais , RNA Ribossômico 16S , Diarreia/etiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Intestino Delgado , Hábitos , Imunoglobulina A
5.
Biol Res ; 56(1): 40, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37438821

RESUMO

BACKGROUND: Polar microalgae contain unique compounds that enable them to adapt to extreme environments. As the skin barrier is our first line of defense against external threats, polar microalgae extracts may possess restorative properties for damaged skin, but the potential of microalgae extracts as skin protective agents remains unknown. PURPOSE: This study aimed to analyze compound profiles from polar microalgae extracts, evaluate their potential as skin epithelial protective agents, and examine the underlying mechanisms. METHODS: Six different polar microalgae, Micractinium sp. (KSF0015 and KSF0041), Chlamydomonas sp. (KNM0029C, KSF0037, and KSF0134), and Chlorococcum sp. (KSF0003), were collected from the Antarctic or Arctic regions. Compound profiles of polar and non-polar microalgae extracts were analyzed using gas chromatography-mass spectrometry (GC-MS). The protective activities of polar microalgae extracts on human keratinocyte cell lines against oxidative stress, radiation, and psoriatic cytokine exposure were assessed. The potential anti-inflammatory mechanisms mediated by KSF0041, a polar microalga with protective properties against oxidative stress, ultraviolet (UV) B, and an inflammatory cytokine cocktail, were investigated using RNA-sequencing analysis. To evaluate the therapeutic activity of KSF0041, an imiquimod-induced murine model of psoriatic dermatitis was used. RESULTS: Polar microalgae contain components comparable to those of their non-polar counterparts, but also showed distinct differences, particularly in fatty acid composition. Polar microalgae extracts had a greater ability to scavenge free radicals than did non-polar microalgae and enhanced the viability of HaCaT cells, a human keratinocyte cell line, following exposure to UVB radiation or psoriatic cytokines. These extracts also reduced barrier integrity damage and decreased mRNA levels of inflammatory cytokines in psoriatic HaCaT cells. Treatment with KSF0041 extract altered the transcriptome of psoriatic HaCaT cells toward a more normal state. Furthermore, KSF0041 extract had a therapeutic effect in a mouse model of psoriasis. CONCLUSIONS: Bioactive compounds from polar microalgae extracts could provide novel therapeutics for damaged and/or inflamed skin.


Assuntos
Dermatite , Microalgas , Humanos , Animais , Camundongos , Queratinócitos , Citocinas , Substâncias Protetoras , Inflamação , Extratos Vegetais/farmacologia
6.
Mar Drugs ; 20(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36135751

RESUMO

The intestine and skin provide crucial protection against the external environment. Strengthening the epithelial barrier function of these organs is critical for maintaining homeostasis against inflammatory stimuli. Recent studies suggest that polar marine algae are a promising bioactive resource because of their adaptation to extreme environments. To investigate the bioactive properties of polar marine algae on epithelial cells of the intestine and skin, we created extracts of the Antarctic macroalgae Himantothallus grandifolius, Plocamium cartilagineum, Phaeurus antarcticus, and Kallymenia antarctica, analyzed the compound profiles of the extracts using gas chromatography-mass spectrometry, and tested the protective activities of the extracts on human intestinal and keratinocyte cell lines by measuring cell viability and reactive oxygen species scavenging. In addition, we assessed immune responses modulated by the extracts by real-time polymerase chain reaction, and we monitored the barrier-protective activities of the extracts on intestinal and keratinocyte cell lines by measuring transepithelial electrical resistance and fluorescence-labeled dextran flux, respectively. We identified bioactive compounds, including several fatty acids and lipid compounds, in the extracts, and found that the extracts perform antioxidant activities that remove intracellular reactive oxygen species and scavenge specific radicals. Furthermore, the Antarctic marine algae extracts increased cell viability, protected cells against inflammatory stimulation, and increased the barrier integrity of cells damaged by lipopolysaccharide or ultraviolet radiation. These results suggest that Antarctic marine algae have optimized their composition for polar environments, and furthermore, that the bioactive properties of compounds produced by Antarctic marine algae can potentially be used to develop therapeutics to promote the protective barrier function of the intestine and skin.


Assuntos
Antioxidantes , Phaeophyceae , Regiões Antárticas , Antioxidantes/farmacologia , Dextranos , Ácidos Graxos , Humanos , Lipopolissacarídeos , Recursos Naturais , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio , Raios Ultravioleta
7.
Lupus ; 30(9): 1427-1437, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34013817

RESUMO

BACKGROUND: Tissue resident memory T cells (TRMs) persist long-term in peripheral tissues without recirculation, triggering an immediate protective inflammatory state upon the re-recognition of the antigen. Despite evidence incriminating the dysregulation of TRMs in autoimmune diseases, few studies have examined their expression in cutaneous lupus erythematosus (CLE). OBJECTIVES: We aimed to examine whether there are differences among TRM populations in CLE depending on different clinical conditions, such as the CLE subtype or association with systemic lupus erythematosus, and to determine the effect of type I interferon (IFN) on the development of TRMs in CLE. METHODS: CLE disease activity was evaluated using the Cutaneous Lupus Erythematosus Disease Area and Severity Index. The expression of the TRM markers CD69 and CD103 in CLE lesions was evaluated by immunofluorescence. Flow cytometry was performed on peripheral blood mononuclear cells after IFNα treatment. RESULTS: The number of TRMs expressing either CD69 or CD103 was significantly higher in CLE lesions than in control skin; however, it was not significantly different between discoid lupus erythematosus and subacute CLE, or dependent on the presence of concomitant systemic lupus. Lesional severity was not correlated with an increase in TRMs in CLE. IFNα treatment induced a conspicuous increase in CD69 expression in skin-homing T cells, more profoundly in CD4+ T cells than in CD8+ T cells. CONCLUSIONS: Skin TRMs, either CD69 or CD103-positive cells, showed increased levels in the lesional skin of CLE, and IFNα increased the expression of CD69 in T cells.


Assuntos
Interferon-alfa/imunologia , Lúpus Eritematoso Cutâneo/imunologia , Células T de Memória/imunologia , Pele/imunologia , Adulto , Antígenos CD/biossíntese , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/biossíntese , Antígenos de Diferenciação de Linfócitos T/imunologia , Feminino , Humanos , Cadeias alfa de Integrinas/biossíntese , Cadeias alfa de Integrinas/imunologia , Interferon-alfa/farmacologia , Lectinas Tipo C/biossíntese , Lectinas Tipo C/imunologia , Lúpus Eritematoso Discoide/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Eur Child Adolesc Psychiatry ; 30(2): 261-269, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32193646

RESUMO

Increasing evidence suggests that serum lipids are associated with depressive symptoms. However, previous studies have mostly employed a cross-sectional design and assessed middle-aged or older adult populations, making it difficult to discern the impact of lipid changes early in life on the development of depression. Accordingly, we sought to investigate changes in blood cholesterol levels during adolescence and the development of depressive symptoms in early adulthood. This prospective cohort study included participants aged 15-16 years from the JS High School Study (JSHS), with an average follow-up of 6 years. Participants had no diagnosed depression at baseline. Multivariable linear regression models were used to estimate associations between changes in total cholesterol during adolescence and depressive symptoms in adulthood. Changes in total cholesterol during adolescence were classified as "consistently low," "decreased," "moderate," "increased," or "consistently high". In men, depressive symptoms were higher in the consistently low (ß = 3.20, p = 0.036) and increased total cholesterol groups (ß = 3.48, p = 0.017), compared with the moderate group. In the consistently high group, although a positive linear association was observed, it lacked statistical significance (ß = 2.71, p = 0.067). While similar tendencies were noted in women, the associations were not statistically significant. Consistently low or increased total cholesterol levels during adolescence may pose an increased risk of depressive symptoms in early adulthood. These findings suggest that different strategies should be adopted to manage the lipid risk factors with consideration of age and sex.


Assuntos
Colesterol/sangue , Depressão/sangue , Adolescente , Adulto , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Estudos Prospectivos , Adulto Jovem
9.
Nat Immunol ; 9(7): 769-76, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18516037

RESUMO

The intestinal cell types responsible for defense against pathogenic organisms remain incompletely characterized. Here we identify a subset of CD11c(hi)CD11b(hi) lamina propria dendritic cells (LPDCs) that expressed Toll-like receptor 5 (TLR5) in the small intestine. When stimulated by the TLR5 ligand flagellin, TLR5(+) LPDCs induced the differentiation of naive B cells into immunoglobulin A-producing plasma cells by a mechanism independent of gut-associated lymphoid tissue. In addition, by a mechanism dependent on TLR5 stimulation, these LPDCs promoted the differentiation of antigen-specific interleukin 17-producing T helper cells and type 1 T helper cells. Unlike spleen DCs, the LPDCs specifically produced retinoic acid, which, in a dose-dependent way, supported the generation and retention of immunoglobulin A-producing cells in the lamina propria and positively regulated the differentiation interleukin 17-producing T helper cells. Our findings demonstrate unique properties of LPDCs and the importance of TLR5 for adaptive immunity in the intestine.


Assuntos
Formação de Anticorpos , Células Dendríticas/imunologia , Imunidade Celular , Imunidade nas Mucosas , Receptor 5 Toll-Like/biossíntese , Animais , Linfócitos B/imunologia , Células Cultivadas , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Flagelina/imunologia , Citometria de Fluxo , Imunoglobulina A/biossíntese , Imunoglobulina A/imunologia , Imuno-Histoquímica , Ativação Linfocitária/imunologia , Camundongos , Mucosa/citologia , Mucosa/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Tretinoína/imunologia , Tretinoína/metabolismo
10.
Cancer Invest ; 38(7): 406-414, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32762373

RESUMO

BACKGROUND: Programmed death 1 (PD-1) and its ligand PD-L1 play a key dysfunction of T lymphocytes. The purpose of this study was to assess and compare the prognostic role of tumor- TILs and its relationship with PD-L1 expression in stage II and III colon cancer. METHODS: Immunohistochemisty was used to assess the densities of CD8+, CD4+, and FOXP3+ cells, and PD-L1 expression in intraepithelial tumor site from 58 stage II and III colon cancers. These were evaluated for association with histopathologic features and overall survival. RESULTS: PD-L1-positive tumors contained a higher number of CD8+ TILs with statistical significance (p = 0.001). CD4+ TILs showed positive correlation with PD-L1 expression (p = 0.034). There were no associations between PD-L1 expression and FOXP3+ TILs. Microsatellite instability (MSI)-high status (p = 0.001; Odd ration 18.0; 95% CI = 4.3-74.8) was the strongest prognostic factor along with mucinous/poor cell differentiation, CD8 and right tumor location was associated with PD-L1 expression (p = 0.024, 0.035 and 0.033, respectively). CONCLUSION: This study demonstrated that PD-L1 expression was associated with MSI-high, increased CD8+ TILs, mucinous and poor cell differentiation, and right-sided tumor location.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias do Colo/mortalidade , Neoplasias do Colo/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imuno-Histoquímica , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Análise de Sobrevida
12.
J Immunol ; 193(3): 999-1005, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25049430

RESUMO

Eosinophils have historically been considered to be destructive end-stage effector cells that have a role in parasitic infections and allergic reactions by the release of their granule-derived cytotoxic proteins. However, an increasing number of experimental observations indicate that eosinophils also are multifunctional leukocytes involved in diverse inflammatory and physiologic immune responses. Under homeostatic conditions, eosinophils are particularly abundant in the lamina propria of the gastrointestinal tract, where their involvement in various biological processes within the gastrointestinal tract has been posited. In this review, we summarize the molecular steps involved in eosinophil development and describe eosinophil trafficking to the gastrointestinal tract. We synthesize the current findings on the phenotypic and functional properties of gastrointestinal eosinophils and the accumulating evidence that they have a contributory role in gastrointestinal disorders, with a focus on primary eosinophilic gastrointestinal disorders. Finally, we discuss the potential role of eosinophils as modulators of the intestinal immune system.


Assuntos
Eosinófilos/citologia , Eosinófilos/imunologia , Trato Gastrointestinal/citologia , Trato Gastrointestinal/imunologia , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/patologia , Animais , Citotoxicidade Imunológica , Eosinófilos/patologia , Trato Gastrointestinal/patologia , Humanos , Imunofenotipagem , Inflamação/imunologia , Inflamação/patologia
13.
Mol Aspects Med ; 99: 101306, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39191143

RESUMO

Psoriasis is a chronic inflammatory skin disease occurring worldwide. Initially viewed as a keratinocyte disorder, psoriasis is now recognized to involve a complex interplay between genetic predisposition, environmental triggers, and a dysregulated immune system, with a significant role of CD4+ T cells producing IL-17. Recent genetic studies have identified susceptibility loci that underscore the importance of innate immune responses, particularly the roles of myeloid cells, such as dendritic cells, macrophages, and neutrophils. These cells initiate and sustain inflammation through cytokine production triggered by external stimuli. They influence keratinocyte behavior and interact with adaptive immune cells. Recent techniques have further revealed the heterogeneity of myeloid cells in psoriatic lesions, highlighting the contributions of less-studied subsets, such as eosinophils and mast cells. This review examines the multifaceted roles of myeloid innate immune cells in psoriasis, emphasizing their functional diversity in promoting psoriatic inflammation. It also describes current treatment targeting myeloid innate immune cells and explores potential new therapeutic strategies based on the functional characteristics of these subsets. Future research should focus on the detailed characterization of myeloid subsets and their interactions to develop targeted treatments that address the complex immune landscape of psoriasis.


Assuntos
Imunidade Inata , Células Mieloides , Psoríase , Humanos , Psoríase/imunologia , Psoríase/etiologia , Psoríase/genética , Psoríase/patologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Animais , Células Dendríticas/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo
14.
Biomolecules ; 14(9)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39334923

RESUMO

Mechanosensitive ion channels, particularly Piezo channels, are widely expressed in various tissues. However, their role in immune cells remains underexplored. Therefore, this study aimed to investigate the functional role of Piezo1 in the human eosinophil cell line AML14.3D10. We detected Piezo1 mRNA expression, but not Piezo2 expression, in these cells, confirming the presence of the Piezo1 protein. Activation of Piezo1 with Yoda1, its specific agonist, resulted in a significant calcium influx, which was inhibited by the Piezo1-specific inhibitor Dooku1, as well as other nonspecific inhibitors (Ruthenium Red, Gd3+, and GsMTx-4). Further analysis revealed that Piezo1 activation modulated the expression and secretion of both pro-inflammatory and anti-inflammatory cytokines in AML14.3D10 cells. Notably, supernatants from Piezo1-activated AML14.3D10 cells enhanced capsaicin and ATP-induced calcium responses in the dorsal root ganglion neurons of mice. These findings elucidate the physiological role of Piezo1 in AML14.3D10 cells and suggest that factors secreted by these cells can modulate the activity of transient receptor potential 1 (TRPV1) and purinergic receptors, which are associated with pain and itch signaling. The results of this study significantly advance our understanding of the function of Piezo1 channels in the immune and sensory nervous systems.


Assuntos
Eosinófilos , Canais Iônicos , Humanos , Canais Iônicos/metabolismo , Canais Iônicos/genética , Animais , Eosinófilos/metabolismo , Eosinófilos/imunologia , Camundongos , Linhagem Celular , Cálcio/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/citologia , Citocinas/metabolismo , Rutênio Vermelho/farmacologia , Trifosfato de Adenosina/metabolismo , Tiadiazóis/farmacologia , Pirazinas
15.
Int Immunopharmacol ; 143(Pt 2): 113441, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39461238

RESUMO

The type 2 scavenger receptor CD36 functions not only as a long chain fatty acid transporter, but also as a pro-inflammatory mediator. Ceramide is the simple N-acylated form of sphingosine and exerts distinct biological activity depending on its acyl chain length. Six ceramide synthases (CerS) in mammals determine the chain length of ceramide species, and CerS6 mainly produces C16-ceramide. Endotoxin-induced septic shock shows high mortality, but the pathophysiologic role of sphingolipids involved in this process has been hardly investigated. This paper aims to highlight the different role of CerS isoforms in endotoxin-induced inflammatory responses and the regulatory role of CD36 in CerS6 protein degradation with an emphasis as the potential therapeutic candidates in humans. Lipopolysaccharide (LPS), the endotoxin of the Gram-negative bacterial cell wall, was treated to induce endotoxin-induced inflammation both in vitro and in vivo. CerS6-derived C16-ceramide propagated LPS-induced inflammatory responses activating various intracellular signaling pathways, such as mitogen-activated protein kinase and nuclear factor-κB, resulting in the formation of inflammasome complex and pro-inflammatory cytokines. Mechanistically, CerS6-derived C16-ceramide augmented inflammatory responses via endoplasmic reticulum stress, and CerS6 protein stability was regulated by CD36. Finally, CerS6 protein expression and LPS-induced lethality were strikingly reduced in CD36 knockout mice. Collectively, our findings show that CerS6-derived C16-ceramide plays a pivotal role in endotoxin-induced inflammation and suggest CerS6 and its regulator CD36 as possible targets for therapy under life-threatening inflammation such as septic shock.

16.
Biofabrication ; 16(2)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277677

RESUMO

Conventional 2D or even recently developed 3Din vitroculture models for hypothalamus and pituitary gland cannot successfully recapitulate reciprocal neuroendocrine communications between these two pivotal neuroendocrine tissues known to play an essential role in controlling the body's endocrine system, survival, and reproduction. In addition, most currentvitroculture models for neuroendocrine tissues fail to properly reflect their complex multicellular structure. In this context, we developed a novel microscale chip platform, termed the 'hypothalamic-pituitary (HP) axis-on-a-chip,' which integrates various cellular components of the hypothalamus and pituitary gland with biomaterials such as collagen and hyaluronic acid. We used non-toxic blood coagulation factors (fibrinogen and thrombin) as natural cross-linking agents to increase the mechanical strength of biomaterials without showing residual toxicity to overcome drawbacks of conventional chemical cross-linking agents. Furthermore, we identified and verified SERPINB2 as a reliable neuroendocrine toxic marker, with its expression significantly increased in both hypothalamus and pituitary gland cells following exposure to various types of toxins. Next, we introduced SERPINB2-fluorescence reporter system into loaded hypothalamic cells and pituitary gland cells within each chamber of the HP axis on a chip, respectively. By incorporating this SERPINB2 detection system into the loaded hypothalamic and pituitary gland cells within our chip platform, Our HP axis-on-chip platform can better mimic reciprocal neuroendocrine crosstalk between the hypothalamus and the pituitary gland in the brain microenvironments with improved efficiency in evaluating neuroendocrine toxicities of certain drug candidates.


Assuntos
Sistemas Microfisiológicos , Hipófise , Hipófise/metabolismo , Hipotálamo/metabolismo , Encéfalo , Materiais Biocompatíveis/metabolismo
17.
Exp Mol Med ; 56(7): 1591-1605, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38945952

RESUMO

The reciprocal crosstalk between testicular Sertoli and Leydig cells plays a vital role in supporting germ cell development and maintaining testicular characteristics and spermatogenesis. Conventional 2D and the recent 3D assay systems fail to accurately replicate the dynamic interactions between these essential endocrine cells. Furthermore, most in vitro testicular tissue models lack the ability to capture the complex multicellular nature of the testis. To address these limitations, we developed a 3D multicellular testis-on-a-chip platform that effectively demonstrates the reciprocal crosstalk between Sertoli cells and the adjacent Leydig cells while incorporating various human testicular tissue constituent cells and various natural polymers infused with blood coagulation factors. Additionally, we identified SERPINB2 as a biomarker of male reproductive toxicity that is activated in both Sertoli and Leydig cells upon exposure to various toxicants. Leveraging this finding, we designed a fluorescent reporter-conjugated toxic biomarker detection system that enables both an intuitive and quantitative assessment of material toxicity by measuring the converted fluorescence intensity. By integrating this fluorescent reporter system into the Sertoli and Leydig cells within our 3D multicellular chip platform, we successfully developed a testis-on-chip model that can be utilized to evaluate the male reproductive toxicity of potential drug candidates. This innovative approach holds promise for advancing toxicity screening and reproductive research.


Assuntos
Dispositivos Lab-On-A-Chip , Células Intersticiais do Testículo , Células de Sertoli , Testículo , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/citologia , Células Intersticiais do Testículo/metabolismo , Humanos , Testículo/metabolismo , Testículo/citologia , Biomarcadores , Comunicação Celular , Animais
18.
Nanoscale ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39405040

RESUMO

A PHD (prolyl hydroxylase) inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), is a drug that can artificially promote tissue regeneration by enhancing metabolic activity through the upregulation of hypoxia inducible factor 1 subunit alpha (Hif-1α) under normoxic conditions. This study presents a novel design methodology for a drug delivery system to maximize the regenerative effect of 1,4-DPCA. Specifically, by encapsulating 1,4-DPCA in polydopamine (PDA) that generates reactive oxygen species (ROS), the combined effects of Hif-1α upregulation and the induction of cellular antioxidant defense mechanisms by localized ROS can significantly enhance tissue regeneration. The study confirmed that each material (PDA and 1,4-DPCA) triggers a positive synergistic effect on the regenerative mechanisms. As a result, the use of a PDA drug delivery system loaded with 1,4-DPCA showed approximately six times greater bone regeneration compared to the control (no treatment) in a mouse calvarial defect model.

19.
Exp Mol Med ; 56(5): 1164-1177, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689088

RESUMO

Recent evidence of gut microbiota dysbiosis in the context of psoriasis and the increased cooccurrence of inflammatory bowel disease and psoriasis suggest a close relationship between skin and gut immune responses. Using a mouse model of psoriasis induced by the Toll-like receptor (TLR) 7 ligand imiquimod, we found that psoriatic dermatitis was accompanied by inflammatory changes in the small intestine associated with eosinophil degranulation, which impaired intestinal barrier integrity. Inflammatory responses in the skin and small intestine were increased in mice prone to eosinophil degranulation. Caco-2 human intestinal epithelial cells were treated with media containing eosinophil granule proteins and exhibited signs of inflammation and damage. Imiquimod-induced skin and intestinal changes were attenuated in eosinophil-deficient mice, and this attenuation was counteracted by the transfer of eosinophils. Imiquimod levels and the distribution of eosinophils were positively correlated in the intestine. TLR7-deficient mice did not exhibit intestinal eosinophil degranulation but did exhibit attenuated inflammation in the skin and small intestine following imiquimod administration. These results suggest that TLR7-dependent bidirectional skin-to-gut communication occurs in psoriatic inflammation and that inflammatory changes in the intestine can accelerate psoriasis.


Assuntos
Degranulação Celular , Modelos Animais de Doenças , Eosinófilos , Intestino Delgado , Psoríase , Receptor 7 Toll-Like , Animais , Humanos , Camundongos , Células CACO-2 , Eosinófilos/metabolismo , Eosinófilos/imunologia , Imiquimode , Inflamação/patologia , Inflamação/metabolismo , Intestino Delgado/patologia , Intestino Delgado/metabolismo , Glicoproteínas de Membrana , Camundongos Knockout , Psoríase/patologia , Psoríase/metabolismo , Pele/patologia , Pele/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética
20.
Exp Mol Med ; 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39482537

RESUMO

Hormonal regulation during food ingestion and its association with pain prompted the investigation of the impact of glucagon-like peptide-1 (GLP-1) on transient receptor potential vanilloid 1 (TRPV1). Both endogenous and synthetic GLP-1, as well as a GLP-1R antagonist, exendin 9-39, reduced heat sensitivity in naïve mice. GLP-1-derived peptides (liraglutide, exendin-4, and exendin 9-39) effectively inhibited capsaicin (CAP)-induced currents and calcium responses in cultured sensory neurons and TRPV1-expressing cell lines. Notably, exendin 9-39 alleviated CAP-induced acute pain, as well as chronic pain induced by complete Freund's adjuvant (CFA) and spared nerve injury (SNI), in mice without causing hyperthermia associated with other TRPV1 inhibitors. Electrophysiological analyses revealed that exendin 9-39 binds to the extracellular side of TRPV1, functioning as a noncompetitive inhibitor of CAP. Exendin 9-39 did not affect proton-induced TRPV1 activation, suggesting its selective antagonism. Among the exendin 9-39 fragments, exendin 20-29 specifically binds to TRPV1, alleviating pain in both acute and chronic pain models without interfering with GLP-1R function. Our study revealed a novel role for GLP-1 and its derivatives in pain relief, suggesting exendin 20-29 as a promising therapeutic candidate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA