Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-37960978

RESUMO

Gas chromatography-tandem mass spectrometry with electron ionization (GC-EI-MS/MS) provides rich information on stable-isotope labeling for 13C-metabolic flux analysis (13C-MFA). To pave the way for the routine application of tandem MS data for metabolic flux quantification, we aimed to compile a comprehensive library of GC-EI-MS/MS fragments of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino acids. First, we established an analytical workflow that combines high-resolution gas chromatography-quadrupole time-of-flight mass spectrometry and fully 13C-labeled biomass to identify and structurally elucidate tandem MS amino acid fragments. Application of the high-mass accuracy MS procedure resulted into the identification of 129 validated precursor-product ion pairs of 13 amino acids with 30 fragments being accepted for 13C-MFA. The practical benefit of the novel tandem MS data was demonstrated by a proof-of-concept study, which confirmed the importance of the compiled library for high-resolution 13C-MFA. ONE SENTENCE SUMMARY: An analytical workflow that combines high-resolution mass spectrometry (MS) and fully 13C-labeled biomass to identify and structurally elucidate tandem MS amino acid fragments, which provide positional information and therefore offering significant advantages over traditional MS to improve 13C-metabolic flux analysis.


Assuntos
Escherichia coli , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Escherichia coli/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Análise do Fluxo Metabólico/métodos , Aminoácidos/metabolismo
2.
BMC Bioinformatics ; 16: 104, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25886743

RESUMO

BACKGROUND: Utilizing kinetic models of biological systems commonly require computational approaches to estimate parameters, posing a variety of challenges due to their highly non-linear and dynamic nature, which is further complicated by the issue of non-identifiability. We propose a novel parameter estimation framework by combining approaches for solving identifiability with a recently introduced filtering technique that can uniquely estimate parameters where conventional methods fail. This framework first conducts a thorough analysis to identify and classify the non-identifiable parameters and provides a guideline for solving them. If no feasible solution can be found, the framework instead initializes the filtering technique with informed prior to yield a unique solution. RESULTS: This framework has been applied to uniquely estimate parameter values for the sucrose accumulation model in sugarcane culm tissue and a gene regulatory network. In the first experiment the results show the progression of improvement in reliable and unique parameter estimation through the use of each tool to reduce and remove non-identifiability. The latter experiment illustrates the common situation where no further measurement data is available to solve the non-identifiability. These results show the successful application of the informed prior as well as the ease with which parallel data sources may be utilized without increasing the model complexity. CONCLUSION: The proposed unified framework is distinct from other approaches by providing a robust and complete solution which yields reliable and unique parameter estimation even in the face of non-identifiability.


Assuntos
Algoritmos , Redes Reguladoras de Genes , Modelos Biológicos , Modelos Estatísticos , Saccharum/metabolismo , Sacarose/metabolismo , Cinética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Saccharum/genética , Saccharum/crescimento & desenvolvimento
3.
Bioinformatics ; 29(8): 1052-9, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23434837

RESUMO

MOTIVATION: In systems biology, kinetic models represent the biological system using a set of ordinary differential equations (ODEs). The correct values of the parameters within these ODEs are critical for a reliable study of the dynamic behaviour of such systems. Typically, it is only possible to experimentally measure a fraction of these parameter values. The rest must be indirectly determined from measurements of other quantities. In this article, we propose a novel statistical inference technique to computationally estimate these unknown parameter values. By characterizing the ODEs with non-linear state-space equations, this inference technique models the unknown parameters as hidden states, which can then be estimated from noisy measurement data. RESULTS: Here we extended the square-root unscented Kalman filter SR-UKF proposed by Merwe and Wan to include constraints with the state estimation process. We developed the constrained square-root unscented Kalman filter (CSUKF) to estimate parameters of non-linear state-space models. This probabilistic inference technique was successfully used to estimate parameters of a glycolysis model in yeast and a gene regulatory network. We showed that our method is numerically stable and can reliably estimate parameters within a biologically meaningful parameter space from noisy observations. When compared with the two common non-linear extensions of Kalman filter in addition to four widely used global optimization algorithms, CSUKF is shown to be both accurate and computationally efficient. With CSUKF, statistical analysis is straightforward, as it directly provides the uncertainty on the estimation result. AVAILABILITY AND IMPLEMENTATION: Matlab code available upon request from the author. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Modelos Biológicos , Redes Reguladoras de Genes , Glicólise , Cinética , Dinâmica não Linear , Biologia de Sistemas/métodos
4.
Plant Physiol ; 163(2): 637-47, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926077

RESUMO

Plant metabolism is characterized by a unique complexity on the cellular, tissue, and organ levels. On a whole-plant scale, changing source and sink relations accompanying plant development add another level of complexity to metabolism. With the aim of achieving a spatiotemporal resolution of source-sink interactions in crop plant metabolism, a multiscale metabolic modeling (MMM) approach was applied that integrates static organ-specific models with a whole-plant dynamic model. Allowing for a dynamic flux balance analysis on a whole-plant scale, the MMM approach was used to decipher the metabolic behavior of source and sink organs during the generative phase of the barley (Hordeum vulgare) plant. It reveals a sink-to-source shift of the barley stem caused by the senescence-related decrease in leaf source capacity, which is not sufficient to meet the nutrient requirements of sink organs such as the growing seed. The MMM platform represents a novel approach for the in silico analysis of metabolism on a whole-plant level, allowing for a systemic, spatiotemporally resolved understanding of metabolic processes involved in carbon partitioning, thus providing a novel tool for studying yield stability and crop improvement.


Assuntos
Hordeum/metabolismo , Análise do Fluxo Metabólico , Metabolômica , Modelos Biológicos , Biomassa , Ritmo Circadiano , Simulação por Computador , Especificidade de Órgãos , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Sementes/metabolismo , Fatores de Tempo
5.
Nucleic Acids Res ; 40(Database issue): D1173-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22086948

RESUMO

MetaCrop is a manually curated repository of high-quality data about plant metabolism, providing different levels of detail from overview maps of primary metabolism to kinetic data of enzymes. It contains information about seven major crop plants with high agronomical importance and two model plants. MetaCrop is intended to support research aimed at the improvement of crops for both nutrition and industrial use. It can be accessed via web, web services and an add-on to the Vanted software. Here, we present several novel developments of the MetaCrop system and the extended database content. MetaCrop is now available in version 2.0 at http://metacrop.ipk-gatersleben.de.


Assuntos
Produtos Agrícolas/metabolismo , Bases de Dados Factuais , Gráficos por Computador , Produtos Agrícolas/enzimologia , Internet , Interface Usuário-Computador
6.
Biology (Basel) ; 12(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37106731

RESUMO

(1) Background: Aging is linked to an altered immune response and metabolism. Inflammatory conditions, such as sepsis, COVID-19, and steatohepatitis are more prevalent in the elderly and steatosis is linked both to severe COVID-19 and sepsis. We hypothesized that aging is linked to a loss of endotoxin tolerance, which normally protects the host from excessive inflammation, and that this is accompanied by elevated levels of hepatic lipids. (2) Methods: An in vivo lipopolysaccharide (LPS) tolerance model in young and old mice was used and the cytokine serum levels were measured by ELISA. Cytokine and toll-like receptor gene expression was determined by qPCR in the lungs and the liver; hepatic fatty acid composition was assessed by GC-MS. (3) Results: The old mice showed a distinct potential for endotoxin tolerance as suggested by the serum cytokine levels and gene expression in the lung tissue. Endotoxin tolerance was less pronounced in the livers of the aged mice. However, the fatty acid composition strongly differed in the liver tissues of the young and old mice with a distinct change in the ratio of C18 to C16 fatty acids. (4) Conclusions: Endotoxin tolerance is maintained in advanced age, but changes in the metabolic tissue homeostasis may lead to an altered immune response in old individuals.

7.
BMC Bioinformatics ; 13: 295, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23146204

RESUMO

BACKGROUND: Metabolic flux analysis has become an established method in systems biology and functional genomics. The most common approach for determining intracellular metabolic fluxes is to utilize mass spectrometry in combination with stable isotope labeling experiments. However, before the mass spectrometric data can be used it has to be corrected for biases caused by naturally occurring stable isotopes, by the analytical technique(s) employed, or by the biological sample itself. Finally the MS data and the labeling information it contains have to be assembled into a data format usable by flux analysis software (of which several dedicated packages exist). Currently the processing of mass spectrometric data is time-consuming and error-prone requiring peak by peak cut-and-paste analysis and manual curation. In order to facilitate high-throughput metabolic flux analysis, the automation of multiple steps in the analytical workflow is necessary. RESULTS: Here we describe iMS2Flux, software developed to automate, standardize and connect the data flow between mass spectrometric measurements and flux analysis programs. This tool streamlines the transfer of data from extraction via correction tools to ¹³C-Flux software by processing MS data from stable isotope labeling experiments. It allows the correction of large and heterogeneous MS datasets for the presence of naturally occurring stable isotopes, initial biomass and several mass spectrometry effects. Before and after data correction, several checks can be performed to ensure accurate data. The corrected data may be returned in a variety of formats including those used by metabolic flux analysis software such as 13CFLUX, OpenFLUX and 13CFLUX2. CONCLUSION: iMS2Flux is a versatile, easy to use tool for the automated processing of mass spectrometric data containing isotope labeling information. It represents the core framework for a standardized workflow and data processing. Due to its flexibility it facilitates the inclusion of different experimental datasets and thus can contribute to the expansion of flux analysis applications.


Assuntos
Marcação por Isótopo/estatística & dados numéricos , Espectrometria de Massas/estatística & dados numéricos , Redes e Vias Metabólicas , Software , Biologia de Sistemas/métodos
8.
Front Plant Sci ; 13: 1008172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325549

RESUMO

Salinity is a global environmental threat to agricultural production and food security around the world. To delineate salt-induced damage from adaption events we analysed a pair of sorghum genotypes which are contrasting in their response to salt stress with respect to physiological, cellular, metabolomic, and transcriptional responses. We find that the salt-tolerant genotype Della can delay the transfer of sodium from the root to the shoot, more swiftly deploy accumulation of proline and antioxidants in the leaves and transfer more sucrose to the root as compared to its susceptible counterpart Razinieh. Instead Razinieh shows metabolic indicators for a higher extent photorespiration under salt stress. Following sodium accumulation by a fluorescent dye in the different regions of the root, we find that Della can sequester sodium in the vacuoles of the distal elongation zone. The timing of the adaptive responses in Della leaves indicates a rapid systemic signal from the roots that is travelling faster than sodium itself. We arrive at a model where resistance and susceptibility are mainly a matter of temporal patterns in signalling.

9.
Bioinformatics ; 25(20): 2755-7, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19578041

RESUMO

UNLABELLED: FBA-SimVis is a VANTED plug-in for the constraint-based analysis of metabolic models with special focus on the visual exploration of metabolic flux data resulting from model analysis. The program provides a user-friendly environment for model reconstruction, constraint-based model analysis, and interactive visualization of the simulation results. With the ability to quantitatively analyse metabolic fluxes in an interactive and visual manner, FBA-SimVis supports a comprehensive understanding of constraint-based metabolic flux models in both overview and detail. AVAILABILITY: Software with manual and tutorials are freely available at http://fbasimvis.ipk-gatersleben.de/


Assuntos
Biologia Computacional/métodos , Redes e Vias Metabólicas , Software , Armazenamento e Recuperação da Informação , Modelos Biológicos , Interface Usuário-Computador
10.
J Theor Biol ; 265(3): 261-9, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20471988

RESUMO

Metabolic reactions are fundamental to living organisms, and a large number of reactions simultaneously occur at a given time in living cells transforming diverse metabolites into each other. There has been an ongoing debate on how to classify metabolites with respect to their importance for metabolic performance, usually based on the analysis of topological properties of genome scale metabolic networks. However, none of these studies have accounted quantitatively for flux in metabolic networks, thus lacking an important component of a cell's biochemistry. We therefore analyzed a genome scale metabolic network of Escherichia coli by comparing growth under 19 different growth conditions, using flux balance analysis and weighted network centrality investigation. With this novel concept of flux centrality we generated metabolite rankings for each particular growth condition. In contrast to the results of conventional analysis of genome scale metabolic networks, different metabolites were top-ranking dependent on the growth condition. At the same time, several metabolites were consistently among the high ranking ones. Those are associated with pathways that have been described by biochemists as the most central part of metabolism, such as glycolysis, tricarboxylic acid cycle and pentose phosphate pathway. The values for the average path length of the analyzed metabolite networks were between 10.5 and 12.6, supporting recent findings that the metabolic network of E. coli is not a small-world network.


Assuntos
Fenômenos Bioquímicos/fisiologia , Escherichia coli/metabolismo , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Análise por Conglomerados , Escherichia coli/crescimento & desenvolvimento
11.
Nucleic Acids Res ; 36(Database issue): D954-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17933764

RESUMO

MetaCrop is a manually curated repository of high quality information concerning the metabolism of crop plants. This includes pathway diagrams, reactions, locations, transport processes, reaction kinetics, taxonomy and literature. MetaCrop provides detailed information on six major crop plants with high agronomical importance and initial information about several other plants. The web interface supports an easy exploration of the information from overview pathways to single reactions and therefore helps users to understand the metabolism of crop plants. It also allows model creation and automatic data export for detailed models of metabolic pathways therefore supporting systems biology approaches. The MetaCrop database is accessible at http://metacrop.ipk-gatersleben.de.


Assuntos
Produtos Agrícolas/metabolismo , Bases de Dados Genéticas , Transporte Biológico , Produtos Agrícolas/enzimologia , Produtos Agrícolas/genética , Bases de Dados Genéticas/normas , Internet , Cinética , Redes e Vias Metabólicas/genética , Controle de Qualidade , Interface Usuário-Computador
12.
Plant Methods ; 15: 48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139238

RESUMO

BACKGROUND: Better understanding of the physiological and metabolic status of plants can only be obtained when metabolic fluxes are accurately assessed in a growing plant. Steady state 13C-MFA has been established as a routine method for analysis of fluxes in plant primary metabolism. However, the experimental system needs to be improved for continuous carbon enrichment from labelled sugars into metabolites for longer periods until complex secondary metabolism reaches steady state. RESULTS: We developed an in vitro plant culture strategy by using peppermint as a model plant with minimizing unlabelled carbon fixation where growing shoot tip was strongly dependent on labelled glucose for their carbon necessity. We optimized the light condition and detected the satisfactory phenotypical growth under the lower light intensity. Total volatile terpenes were also highest at the same light. Analysis of label incorporation into pulegone monoterpene after continuous U-13C6 glucose feeding revealed nearly 100% 13C, even at 15 days after first leaf visibility (DALV). Label enrichment was gradually scrambled with increasing light intensity and leaf age. This study was validated by showing similar levels of label enrichment in proteinogenic amino acids. The efficiency of this method was also verified in oregano. CONCLUSIONS: Our shoot tip culture depicted a method in achieving long term, stable and a high percentage of label accumulation in secondary metabolites within a fully functional growing plant system. It recommends the potential application for the investigations of various facets of plant metabolism by steady state 13C-MFA. The system also provides a greater potential to study sink leaf metabolism. Overall, we propose a system to accurately describe complex metabolic phenotypes in a growing plant.

13.
BMC Bioinformatics ; 9: 90, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18257938

RESUMO

BACKGROUND: Structural analysis of biochemical networks is a growing field in bioinformatics and systems biology. The availability of an increasing amount of biological data from molecular biological networks promises a deeper understanding but confronts researchers with the problem of combinatorial explosion. The amount of qualitative network data is growing much faster than the amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used for modeling purposes, until now. New approaches have been developed, but the complexity of data often limits the application of many of the methods. Biochemical Petri nets make it possible to explore static and dynamic qualitative system properties. One Petri net approach is model validation based on the computation of the system's invariant properties, focusing on t-invariants. T-invariants correspond to subnetworks, which describe the basic system behavior.With increasing system complexity, the basic behavior can only be expressed by a huge number of t-invariants. According to our validation criteria for biochemical Petri nets, the necessary verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not possible anymore. Thus, an automated, biologically meaningful classification would be helpful in analyzing t-invariants, and supporting the understanding of the basic behavior of the considered biological system. METHODS: Here, we introduce a new approach to automatically classify t-invariants to cope with network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single Linkage, and Neighbor Joining in combination with different distance measures to get biologically meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is applied. RESULTS: We considered two different case studies as examples: a small signal transduction pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as functional modules in the network. We found differences in the suitability of the various distance measures as well as the clustering methods. In terms of a biologically meaningful classification of t-invariants, the best results are obtained using the Tanimoto distance measure. Considering clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable for clustering t-invariants with respect to the biological interpretability. CONCLUSION: We propose a new approach for the biological classification of Petri net t-invariants based on cluster analysis. Due to the biologically meaningful data reduction and structuring of network processes, large sets of t-invariants can be evaluated, allowing for model validation of qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.


Assuntos
Algoritmos , Modelos Biológicos , Família Multigênica/fisiologia , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Simulação por Computador
14.
Phytochemistry ; 68(16-18): 2232-42, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17509628

RESUMO

After the completion of the genomic sequencing of model organisms, numerous post-genomic studies, integrating transcriptome and metabolome data, are aimed at developing a more complete understanding of cell physiology. Here, we measure in vivo metabolic fluxes by steady state labeling, and in parallel, the activity of enzymes in central metabolism in cultured developing embryos of Brassica napus. Embryos were grown on either the amino acids glutamine and alanine as an organic nitrogen source, or on ammonium nitrate as an inorganic nitrogen source. The type of nitrogen made available to developing embryos caused substantial differences in fluxes associated with the tricarboxylic acid cycle, including flux reversion. The changes observed in enzyme activity were not consistent with our estimates of metabolic flux. Furthermore, most extractable enzyme activities are in large surplus relative to the requirements for the observed in vivo fluxes. The results demonstrate that in this model system the metabolic response of central metabolism to changes in environmental conditions can be achieved largely without regulatory reprogramming of the enzyme machinery.


Assuntos
Brassica napus/embriologia , Nitrogênio/metabolismo , Sementes/enzimologia , Alanina/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Brassica napus/enzimologia , Ciclo do Ácido Cítrico , Técnicas de Cultura , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Glucose/análise , Glucose/metabolismo , Glutamina/metabolismo , Modelos Biológicos , Nitratos/metabolismo , Sementes/crescimento & desenvolvimento
15.
BMC Bioinformatics ; 7: 219, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16630347

RESUMO

BACKGROUND: The elucidation of whole-cell regulatory, metabolic, interaction and other biological networks generates the need for a meaningful ranking of network elements. Centrality analysis ranks network elements according to their importance within the network structure and different centrality measures focus on different importance concepts. Central elements of biological networks have been found to be, for example, essential for viability. RESULTS: CentiBiN (Centralities in Biological Networks) is a tool for the computation and exploration of centralities in biological networks such as protein-protein interaction networks. It computes 17 different centralities for directed or undirected networks, ranging from local measures, that is, measures that only consider the direct neighbourhood of a network element, to global measures. CentiBiN supports the exploration of the centrality distribution by visualising central elements within the network and provides several layout mechanisms for the automatic generation of graphical representations of a network. It supports different input formats, especially for biological networks, and the export of the computed centralities to other tools. CONCLUSION: CentiBiN helps systems biology researchers to identify crucial elements of biological networks. CentiBiN including a user guide and example data sets is available free of charge at http://centibin.ipk-gatersleben.de/. CentiBiN is available in two different versions: a Java Web Start application and an installable Windows application.


Assuntos
Perfilação da Expressão Gênica/métodos , Modelos Biológicos , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Software , Interface Usuário-Computador , Gráficos por Computador , Simulação por Computador
16.
BMC Bioinformatics ; 7: 109, 2006 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-16519817

RESUMO

BACKGROUND: Recent advances with high-throughput methods in life-science research have increased the need for automatized data analysis and visual exploration techniques. Sophisticated bioinformatics tools are essential to deduct biologically meaningful interpretations from the large amount of experimental data, and help to understand biological processes. RESULTS: We present VANTED, a tool for the visualization and analysis of networks with related experimental data. Data from large-scale biochemical experiments is uploaded into the software via a Microsoft Excel-based form. Then it can be mapped on a network that is either drawn with the tool itself, downloaded from the KEGG Pathway database, or imported using standard network exchange formats. Transcript, enzyme, and metabolite data can be presented in the context of their underlying networks, e. g. metabolic pathways or classification hierarchies. Visualization and navigation methods support the visual exploration of the data-enriched networks. Statistical methods allow analysis and comparison of multiple data sets such as different developmental stages or genetically different lines. Correlation networks can be automatically generated from the data and substances can be clustered according to similar behavior over time. As examples, metabolite profiling and enzyme activity data sets have been visualized in different metabolic maps, correlation networks have been generated and similar time patterns detected. Some relationships between different metabolites were discovered which are in close accordance with the literature. CONCLUSION: VANTED greatly helps researchers in the analysis and interpretation of biochemical data, and thus is a useful tool for modern biological research. VANTED as a Java Web Start Application including a user guide and example data sets is available free of charge at http://vanted.ipk-gatersleben.de.


Assuntos
Algoritmos , Modelos Biológicos , Transdução de Sinais/fisiologia , Software , Fatores de Transcrição/metabolismo , Interface Usuário-Computador , Gráficos por Computador , Simulação por Computador
17.
BMC Bioinformatics ; 7: 465, 2006 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17059592

RESUMO

BACKGROUND: Many attempts are being made to understand biological subjects at a systems level. A major resource for these approaches are biological databases, storing manifold information about DNA, RNA and protein sequences including their functional and structural motifs, molecular markers, mRNA expression levels, metabolite concentrations, protein-protein interactions, phenotypic traits or taxonomic relationships. The use of these databases is often hampered by the fact that they are designed for special application areas and thus lack universality. Databases on metabolic pathways, which provide an increasingly important foundation for many analyses of biochemical processes at a systems level, are no exception from the rule. Data stored in central databases such as KEGG, BRENDA or SABIO-RK is often limited to read-only access. If experimentalists want to store their own data, possibly still under investigation, there are two possibilities. They can either develop their own information system for managing that own data, which is very time-consuming and costly, or they can try to store their data in existing systems, which is often restricted. Hence, an out-of-the-box information system for managing metabolic pathway data is needed. RESULTS: We have designed META-ALL, an information system that allows the management of metabolic pathways, including reaction kinetics, detailed locations, environmental factors and taxonomic information. Data can be stored together with quality tags and in different parallel versions. META-ALL uses Oracle DBMS and Oracle Application Express. We provide the META-ALL information system for download and use. In this paper, we describe the database structure and give information about the tools for submitting and accessing the data. As a first application of META-ALL, we show how the information contained in a detailed kinetic model can be stored and accessed. CONCLUSION: META-ALL is a system for managing information about metabolic pathways. It facilitates the handling of pathway-related data and is designed to help biochemists and molecular biologists in their daily research. It is available on the Web at http://bic-gh.de/meta-all and can be downloaded free of charge and installed locally.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Redes e Vias Metabólicas
19.
FEBS Lett ; 535(1-3): 136-40, 2003 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-12560092

RESUMO

It has recently been proposed that acetaldehyde is the physiological inducer of the alc gene system and hence indirectly the activator of the AlcA promoter in Aspergillus nidulans. Here we show that this chemical induces expression of a GUS (beta-D-glucuronidase) reporter under the control of the alc gene system in transgenic potato tubers more rapidly than ethanol allowing tighter control of transgene expression. Furthermore by analysis of metabolite levels we demonstrate that the application of inducer has few effects on metabolism. We propose that this system is therefore ideal for the temporal regulation of important metabolic enzyme activities.


Assuntos
Acetaldeído/farmacologia , Etanol/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/genética , Aspergillus nidulans , Butanonas/farmacologia , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Genes Reporter , Glucuronidase/biossíntese , Glucuronidase/genética , Plantas Geneticamente Modificadas , Solanum tuberosum/metabolismo
20.
Curr Opin Biotechnol ; 26: 183-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24561560

RESUMO

Quantitative information about metabolic networks has been mainly obtained at the level of metabolite contents, transcript abundance, and enzyme activities. However, the active process of metabolism is represented by the flow of matter through the pathways. These metabolic fluxes can be predicted by Flux Balance Analysis or determined experimentally by (13)C-Metabolic Flux Analysis. These relatively complicated and time-consuming methods have recently seen significant improvements at the level of coverage and throughput. Metabolic models have developed from single cell models into whole-organism dynamic models. Advances in lab automation and data handling have significantly increased the throughput of flux measurements. This review summarizes advances to increase coverage and throughput of metabolic flux analysis in plants.


Assuntos
Análise do Fluxo Metabólico , Redes e Vias Metabólicas , Plantas/metabolismo , Automação , Ensaios de Triagem em Larga Escala , Modelos Biológicos , Células Vegetais/metabolismo , Plantas/enzimologia , Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA