Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 40(8): 1641-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22587986

RESUMO

The pivotal role of organic anion-transporting polypeptide 1B1 (OATP1B1) in drug disposition has become clear over the last decade. Therefore, an OATP1B1 inhibition assay suitable for use within early drug discovery was developed and characterized. IC(50) estimates for 10 literature compounds using pitavastatin and estradiol-17ß-glucuronide as substrates were within 2-fold of each other. In addition, the IC(50) estimates using pitavastatin uptake agreed well with literature values (r(2) = 0.92, average fold error = 1.3). However, when estrone-3-sulfate was used, OATP1B1 inhibition was underpredicted by as much as 10-fold. A comparison of uptake in human hepatocytes and OATP1B1 inhibition showed a significant correlation (r(2) = 0.53, P < 0.001) for more than 40 compounds. These data suggest that, for discrete chemical series, OATP1B1 inhibition data may be used as a surrogate for more costly and time-consuming uptake studies in hepatocytes. OATP1B1 inhibition data, determined for over 260 compounds representing both internal AstraZeneca and literature chemistry, were also used to generate a continuous in silico model. The robustness of the model was demonstrated by accurately predicting OATP1B1 inhibition for external test sets using 50 AstraZeneca compounds (root mean square error = 0.45) and 12 literature drugs (RMSE = 0.32). The most important molecular descriptors for the prediction of OATP1B1 inhibition were maximal hydrogen bonding strength followed by cLogP. This study has shown that a well validated OATP1B1 inhibition assay in conjunction with an in silico approaches has the potential to influence significantly the design-make-test cycle and subsequently reduce the propensity of OATP1B1 ligands.


Assuntos
Descoberta de Drogas , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Linhagem Celular , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado
2.
Altern Lab Anim ; 34(3): 295-303, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16831061

RESUMO

A method for the routine, rapid and simultaneous cloning of drug targets from multiple mammalian species is described. This expedites the generation of recombinant proteins and cell lines that can provide alternatives to animal experiments. This was achieved by the collection of RNA from a comprehensive range of tissues from a variety of species, and the optimisation of cDNA synthesis. This "zooplate" has been successfully used for the simultaneous amplification and cloning of drug targets from multiple species. These products have subsequently been used to develop in vitro assays that support efficacy and safety studies in new drug discovery programmes. Within the framework of the Three Rs, these reagents can reduce the number of animals required to provide material for ex vivo assays and can refine the in vivo studies that are still necessary.


Assuntos
Alternativas aos Testes com Animais/métodos , Clonagem Molecular/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas Recombinantes/biossíntese , Animais , Humanos , RNA/química , RNA/genética , Receptores CXCR3 , Receptores de Quimiocinas/química , Receptores de Quimiocinas/genética , Proteínas Recombinantes/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA