Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 602(7897): 487-495, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942634

RESUMO

The emergence of SARS-CoV-2 variants of concern suggests viral adaptation to enhance human-to-human transmission1,2. Although much effort has focused on the characterization of changes in the spike protein in variants of concern, mutations outside of spike are likely to contribute to adaptation. Here, using unbiased abundance proteomics, phosphoproteomics, RNA sequencing and viral replication assays, we show that isolates of the Alpha (B.1.1.7) variant3 suppress innate immune responses in airway epithelial cells more effectively than first-wave isolates. We found that the Alpha variant has markedly increased subgenomic RNA and protein levels of the nucleocapsid protein (N), Orf9b and Orf6-all known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein that is required for activation of the RNA-sensing adaptor MAVS. Moreover, the activity of Orf9b and its association with TOM70 was regulated by phosphorylation. We propose that more effective innate immune suppression, through enhanced expression of specific viral antagonist proteins, increases the likelihood of successful transmission of the Alpha variant, and may increase in vivo replication and duration of infection4. The importance of mutations outside the spike coding region in the adaptation of SARS-CoV-2 to humans is underscored by the observation that similar mutations exist in the N and Orf9b regulatory regions of the Delta and Omicron variants.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Evolução Molecular , Evasão da Resposta Imune , Imunidade Inata/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , COVID-19/transmissão , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Humanos , Imunidade Inata/genética , Interferons/imunologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Proteômica , RNA Viral/genética , RNA-Seq , SARS-CoV-2/classificação , SARS-CoV-2/crescimento & desenvolvimento
2.
Nature ; 600(7888): 339-343, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34759323

RESUMO

Human epidermal growth factor receptor 2 (HER2) and HER3 form a potent pro-oncogenic heterocomplex1-3 upon binding of growth factor neuregulin-1ß (NRG1ß). The mechanism by which HER2 and HER3 interact remains unknown in the absence of any structures of the complex. Here we isolated the NRG1ß-bound near full-length HER2-HER3 dimer and, using cryo-electron microscopy, reconstructed the extracellulardomain module, revealing unexpected dynamics at the HER2-HER3 dimerization interface. We show that the dimerization arm of NRG1ß-bound HER3 is unresolved because the apo HER2 monomer does not undergo a ligand-induced conformational change needed to establish a HER3 dimerization arm-binding pocket. In a structure of the oncogenic extracellular domain mutant HER2(S310F), we observe a compensatory interaction with the HER3 dimerization arm that stabilizes the dimerization interface. Both HER2-HER3 and HER2(S310F)-HER3 retain the capacity to bind to the HER2-directed therapeutic antibody trastuzumab, but the mutant complex does not bind to pertuzumab. Our structure of the HER2(S310F)-HER3-NRG1ß-trastuzumab Fab complex reveals that the receptor dimer undergoes a conformational change to accommodate trastuzumab. Thus, similar to oncogenic mutations, therapeutic agents exploit the intrinsic dynamics of the HER2-HER3 heterodimer. The unique features of a singly liganded HER2-HER3 heterodimer underscore the allosteric sensing of ligand occupancy by the dimerization interface and explain why extracellular domains of HER2 do not homo-associate via a canonical active dimer interface.


Assuntos
Microscopia Crioeletrônica , Neuregulina-1/química , Multimerização Proteica , Receptor ErbB-2/química , Receptor ErbB-3/química , Regulação Alostérica , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/ultraestrutura , Sítios de Ligação , Humanos , Fragmentos Fab das Imunoglobulinas/química , Modelos Moleculares , Mutação , Neuregulina-1/ultraestrutura , Oncogenes/genética , Estabilidade Proteica , Receptor ErbB-2/ultraestrutura , Receptor ErbB-3/ultraestrutura , Trastuzumab/química , Trastuzumab/ultraestrutura
3.
Cell ; 137(7): 1293-307, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19563760

RESUMO

Signaling by the epidermal growth factor receptor requires an allosteric interaction between the kinase domains of two receptors, whereby one activates the other. We show that the intracellular juxtamembrane segment of the receptor, known to potentiate kinase activity, is able to dimerize the kinase domains. The C-terminal half of the juxtamembrane segment latches the activated kinase domain to the activator, and the N-terminal half of this segment further potentiates dimerization, most likely by forming an antiparallel helical dimer that engages the transmembrane helices of the activated receptor. Our data are consistent with a mechanism in which the extracellular domains block the intrinsic ability of the transmembrane and cytoplasmic domains to dimerize and activate, with ligand binding releasing this block. The formation of the activating juxtamembrane latch is prevented by the C-terminal tails in a structure of an inactive kinase domain dimer, suggesting how alternative dimers can prevent ligand-independent activation.


Assuntos
Membrana Celular/metabolismo , Receptores ErbB/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Receptores ErbB/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
4.
EMBO J ; 38(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30692133

RESUMO

COP1 is a highly conserved ubiquitin ligase that regulates diverse cellular processes in plants and metazoans. Tribbles pseudokinases, which only exist in metazoans, act as scaffolds that interact with COP1 and its substrates to facilitate ubiquitination. Here, we report that, in addition to this scaffolding role, TRIB1 promotes nuclear localization of COP1 by disrupting an intramolecular interaction between the WD40 domain and a previously uncharacterized regulatory site within COP1. This site, which we have termed the pseudosubstrate latch (PSL), resembles the consensus COP1-binding motif present in known COP1 substrates. Our findings support a model in which binding of the PSL to the WD40 domain stabilizes a conformation of COP1 that is conducive to CRM1-mediated nuclear export, and TRIB1 displaces this intramolecular interaction to induce nuclear retention of COP1. Coevolution of Tribbles and the PSL in metazoans further underscores the importance of this role of Tribbles in regulating COP1 function.


Assuntos
Núcleo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Carioferinas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Repetições WD40 , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Núcleo Celular/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Carioferinas/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Homologia de Sequência , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteína Exportina 1
7.
Proc Natl Acad Sci U S A ; 116(31): 15495-15504, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311869

RESUMO

Members of the New Kinase Family 3 (NKF3), PEAK1/SgK269 and Pragmin/SgK223 pseudokinases, have emerged as important regulators of cell motility and cancer progression. Here, we demonstrate that C19orf35 (PEAK3), a newly identified member of the NKF3 family, is a kinase-like protein evolutionarily conserved across mammals and birds and a regulator of cell motility. In contrast to its family members, which promote cell elongation when overexpressed in cells, PEAK3 overexpression does not have an elongating effect on cell shape but instead is associated with loss of actin filaments. Through an unbiased search for PEAK3 binding partners, we identified several regulators of cell motility, including the adaptor protein CrkII. We show that by binding to CrkII, PEAK3 prevents the formation of CrkII-dependent membrane ruffling. This function of PEAK3 is reliant upon its dimerization, which is mediated through a split helical dimerization domain conserved among all NKF3 family members. Disruption of the conserved DFG motif in the PEAK3 pseudokinase domain also interferes with its ability to dimerize and subsequently bind CrkII, suggesting that the conformation of the pseudokinase domain might play an important role in PEAK3 signaling. Hence, our data identify PEAK3 as an NKF3 family member with a unique role in cell motility driven by dimerization of its pseudokinase domain.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Multimerização Proteica , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-crk/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células COS , Membrana Celular/metabolismo , Forma Celular , Chlorocebus aethiops , Sequência Conservada , Proteínas do Citoesqueleto/química , Evolução Molecular , Células HEK293 , Humanos , Filogenia , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteínas Tirosina Quinases/química
8.
Circulation ; 142(10): 932-947, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32693635

RESUMO

BACKGROUND: Genetic variants in calsequestrin-2 (CASQ2) cause an autosomal recessive form of catecholaminergic polymorphic ventricular tachycardia (CPVT), although isolated reports have identified arrhythmic phenotypes among heterozygotes. Improved insight into the inheritance patterns, arrhythmic risks, and molecular mechanisms of CASQ2-CPVT was sought through an international multicenter collaboration. METHODS: Genotype-phenotype segregation in CASQ2-CPVT families was assessed, and the impact of genotype on arrhythmic risk was evaluated using Cox regression models. Putative dominant CASQ2 missense variants and the established recessive CASQ2-p.R33Q variant were evaluated using oligomerization assays and their locations mapped to a recent CASQ2 filament structure. RESULTS: A total of 112 individuals, including 36 CPVT probands (24 homozygotes/compound heterozygotes and 12 heterozygotes) and 76 family members possessing at least 1 presumed pathogenic CASQ2 variant, were identified. Among CASQ2 homozygotes and compound heterozygotes, clinical penetrance was 97.1% and 26 of 34 (76.5%) individuals had experienced a potentially fatal arrhythmic event with a median age of onset of 7 years (95% CI, 6-11). Fifty-one of 66 CASQ2 heterozygous family members had undergone clinical evaluation, and 17 of 51 (33.3%) met diagnostic criteria for CPVT. Relative to CASQ2 heterozygotes, CASQ2 homozygote/compound heterozygote genotype status in probands was associated with a 3.2-fold (95% CI, 1.3-8.0; P=0.013) increased hazard of a composite of cardiac syncope, aborted cardiac arrest, and sudden cardiac death, but a 38.8-fold (95% CI, 5.6-269.1; P<0.001) increased hazard in genotype-positive family members. In vitro turbidity assays revealed that p.R33Q and all 6 candidate dominant CASQ2 missense variants evaluated exhibited filamentation defects, but only p.R33Q convincingly failed to dimerize. Structural analysis revealed that 3 of these 6 putative dominant negative missense variants localized to an electronegative pocket considered critical for back-to-back binding of dimers. CONCLUSIONS: This international multicenter study of CASQ2-CPVT redefines its heritability and confirms that pathogenic heterozygous CASQ2 variants may manifest with a CPVT phenotype, indicating a need to clinically screen these individuals. A dominant mode of inheritance appears intrinsic to certain missense variants because of their location and function within the CASQ2 filament structure.


Assuntos
Calsequestrina/genética , Heterozigoto , Homozigoto , Mutação de Sentido Incorreto , Taquicardia Ventricular/genética , Feminino , Humanos , Masculino , Fatores de Risco
9.
Biochem Soc Trans ; 49(2): 645-661, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33860789

RESUMO

The MET receptor tyrosine kinase (RTK) and its cognate ligand hepatocyte growth factor (HGF) comprise a signaling axis essential for development, wound healing and tissue homeostasis. Aberrant HGF/MET signaling is a driver of many cancers and contributes to drug resistance to several approved therapeutics targeting other RTKs, making MET itself an important drug target. In RTKs, homeostatic receptor signaling is dependent on autoinhibition in the absence of ligand binding and orchestrated set of conformational changes induced by ligand-mediated receptor dimerization that result in activation of the intracellular kinase domains. A fundamental understanding of these mechanisms in the MET receptor remains incomplete, despite decades of research. This is due in part to the complex structure of the HGF ligand, which remains unknown in its full-length form, and a lack of high-resolution structures of the complete MET extracellular portion in an apo or ligand-bound state. A current view of HGF-dependent MET activation has evolved from biochemical and structural studies of HGF and MET fragments and here we review what these findings have thus far revealed.


Assuntos
Fator de Crescimento de Hepatócito/química , Fator de Crescimento de Hepatócito/metabolismo , Domínios Proteicos , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Fator de Crescimento de Hepatócito/genética , Humanos , Ligantes , Modelos Moleculares , Mutação , Ligação Proteica , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais/genética
10.
Protein Expr Purif ; 179: 105780, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33115654

RESUMO

BACKGROUND: The heterologous expression of human kinases in good purity and in a monomeric, soluble and active form can be challenging. Most of the reported successful attempts are carried out in insect cells as a host. The use of E. coli for expression is limited to a few kinases and usually is facilitated by large solubility tags that can limit biophysical studies and affect protein-protein interactions. In this report, we evaluate the methylotrophic yeast Pichia pastoris (P. pastoris) as a general-purpose host for expression of human kinases. METHODS: Six diverse kinases were chosen due to their therapeutic importance in human cancers. Tested proteins include serine/threonine kinases cyclin-dependent kinases 4 and 6 (CDK4 and 6) and aurora kinase A (AurKA), receptor tyrosine kinase erbB-2 (HER2), and dual specificity kinase mitogen-activated protein kinase kinase 3 (MKK3b). Noting that positively charged kinases expressed with higher yield, we sought to improve expression of two challenging targets, CDK6 and HER2, by fusing the highly basic, N-terminal domain of the secreted tyrosine-protein kinase VLK. The standard expression procedure for P. pastoris was adopted, followed by purification using affinity chromatography. Purity and activity of the proteins were confirmed and compared to published values. RESULTS: Some kinases were purified with good yield and purity and with comparable activity to commercially available versions. Addition of the VLK domain improved expression and decreased aggregation of CDK6 and HER2.


Assuntos
Proteínas Quinases , Proteínas Recombinantes de Fusão , Saccharomycetales , Animais , Cromatografia de Afinidade , Humanos , Domínios Proteicos/genética , Proteínas Quinases/genética , Proteínas Quinases/isolamento & purificação , Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Células Sf9 , Solubilidade
11.
Dev Biol ; 447(1): 71-89, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079424

RESUMO

Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.


Assuntos
Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Embrião de Mamíferos/patologia , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Proteína Tirosina Quinases/genética
12.
J Biol Chem ; 294(37): 13545-13559, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31341017

RESUMO

The homeodomain-interacting protein kinase (HIPK) family is comprised of four nuclear protein kinases, HIPK1-4. HIPK proteins phosphorylate a diverse range of transcription factors involved in cell proliferation, differentiation, and apoptosis. HIPK2, thus far the best-characterized member of this largely understudied family of protein kinases, plays a role in the activation of p53 in response to DNA damage. Despite this tumor-suppressor function, HIPK2 is also found overexpressed in several cancers, and its hyperactivation causes chronic fibrosis. There are currently no structures of HIPK2 or of any other HIPK kinase. Here, we report the crystal structure of HIPK2's kinase domain bound to CX-4945, a casein kinase 2α (CK2α) inhibitor currently in clinical trials against several cancers. The structure, determined at 2.2 Å resolution, revealed that CX-4945 engages the HIPK2 active site in a hybrid binding mode between that seen in structures of CK2α and Pim1 kinases. The HIPK2 kinase domain crystallized in the active conformation, which was stabilized by phosphorylation of the activation loop. We noted that the overall kinase domain fold of HIPK2 closely resembles that of evolutionarily related dual-specificity tyrosine-regulated kinases (DYRKs). Most significant structural differences between HIPK2 and DYRKs included an absence of the regulatory N-terminal domain and a unique conformation of the CMGC-insert region and of a newly defined insert segment in the αC-ß4 loop. This first crystal structure of HIPK2 paves the way for characterizing the understudied members of the HIPK family and for developing HIPK2-directed therapies for managing cancer and fibrosis.


Assuntos
Proteínas de Transporte/química , Proteínas Serina-Treonina Quinases/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/classificação , Proteínas de Transporte/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Evolução Molecular , Humanos , Simulação de Dinâmica Molecular , Naftiridinas/química , Naftiridinas/metabolismo , Fenazinas , Filogenia , Ligação Proteica , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
13.
Proc Natl Acad Sci U S A ; 114(14): E2836-E2845, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320942

RESUMO

Heteromeric interactions between the catalytically impaired human epidermal growth factor receptor (HER3/ERBB3) and its catalytically active homologs EGFR and HER2 are essential for their signaling. Different ligands can activate these receptor pairs but lead to divergent signaling outcomes through mechanisms that remain largely unknown. We used stochastic optical reconstruction microscopy (STORM) with pair-correlation analysis to show that EGF and neuregulin (NRG) can induce different extents of HER3 clustering that are dependent on the nature of the coexpressed HER receptor. We found that the presence of these clusters correlated with distinct patterns and mechanisms of receptor phosphorylation. NRG induction of HER3 phosphorylation depended on the formation of the asymmetric kinase dimer with EGFR in the absence of detectable higher-order oligomers. Upon EGF stimulation, HER3 paralleled previously observed EGFR behavior and formed large clusters within which HER3 was phosphorylated via a noncanonical mechanism. HER3 phosphorylation by HER2 in the presence of NRG proceeded through still another mechanism and involved the formation of clusters within which receptor phosphorylation depended on asymmetric kinase dimerization. Our results demonstrate that the higher-order organization of HER receptors is an essential feature of their ligand-induced behavior and plays an essential role in lateral cross-activation of the receptors. We also show that HER receptor ligands exert unique effects on signaling by modulating this behavior.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Neuregulina-1/metabolismo , Receptor ErbB-3/metabolismo , Animais , Linhagem Celular , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/genética , Células HEK293 , Humanos , Camundongos , Microscopia/métodos , Imagem Molecular/métodos , Neuregulina-1/farmacologia , Fosforilação/efeitos dos fármacos , Multimerização Proteica , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética
14.
IUBMB Life ; 71(6): 706-720, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31046201

RESUMO

Intercellular communication governs complex physiological processes ranging from growth and development to the maintenance of cellular and organ homeostasis. In nearly all metazoans, receptor tyrosine kinases (RTKs) are central players in these diverse and fundamental signaling processes. Aberrant RTK signaling is at the root of many developmental diseases and cancers and it remains a key focus of targeted therapies, several of which have achieved considerable success in patients. These therapeutic advances in targeting RTKs have been propelled by numerous genetic, biochemical, and structural studies detailing the functions and molecular mechanisms of regulation and activation of RTKs. The latter in particular have proven to be instrumental for the development of new drugs, selective targeting of mutant forms of RTKs found in disease, and counteracting ensuing drug resistance. However, to this day, such studies have not yet yielded high-resolution structures of intact RTKs that encompass the extracellular and intracellular domains and the connecting membrane-spanning transmembrane domain. Technically challenging to obtain, these structures are instrumental to complete our understanding of the mechanisms by which RTKs are activated by extracellular ligands and of the effect of pathological mutations that do not directly reside in the catalytic sites of tyrosine kinase domains. In this review, we focus on the recent progress toward obtaining such structures and the insights already gained by structural studies of the subdomains of the receptors that belong to the epidermal growth factor receptor, insulin receptor, and platelet-derived growth factor receptor RTK families. © 2019 IUBMB Life, 71(6):706-720, 2019.


Assuntos
Resistência a Medicamentos/genética , Conformação Proteica , Receptores Proteína Tirosina Quinases/genética , Domínio Catalítico , Comunicação Celular/genética , Humanos , Mutação/genética , Neoplasias/genética , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/ultraestrutura , Transdução de Sinais/genética
15.
Mol Cell ; 42(1): 9-22, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21474065

RESUMO

In contrast to the active conformations of protein kinases, which are essentially the same for all kinases, inactive kinase conformations are structurally diverse. Some inactive conformations are, however, observed repeatedly in different kinases, perhaps reflecting an important role in catalysis. In this review, we analyze one of these recurring conformations, first identified in CDK and Src kinases, which turned out to be central to understanding of how kinase domain of the EGF receptor is activated. This mechanism, which involves the stabilization of the active conformation of an α helix, has features in common with mechanisms operative in several other kinases.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Regulação Alostérica , Catálise , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Dimerização , Ativação Enzimática , Estabilidade Enzimática , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Quinases da Família src/química , Quinases da Família src/metabolismo
16.
Biochem J ; 457(2): 323-34, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24107129

RESUMO

Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains.


Assuntos
Janus Quinase 2/química , Janus Quinase 2/classificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Receptor ErbB-3/química , Receptor ErbB-3/classificação , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Insetos , Janus Quinase 2/genética , Dados de Sequência Molecular , Ligação Proteica/fisiologia , Receptor ErbB-3/genética
17.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260342

RESUMO

Human Epidermal growth factor Receptor 4 (HER4 or ERBB4) carries out essential functions in the development and maintenance of the cardiovascular and nervous systems. HER4 activation is regulated by a diverse group of extracellular ligands including the neuregulin (NRG) family and betacellulin (BTC), which promote HER4 homodimerization or heterodimerization with other HER receptors. Important cardiovascular functions of HER4 are exerted via heterodimerization with its close homolog and orphan receptor, HER2. To date structural insights into ligand-mediated HER4 activation have been limited to crystallographic studies of HER4 ectodomain homodimers in complex with NRG1ß. Here we report cryo-EM structures of near full-length HER2/HER4 heterodimers and full-length HER4 homodimers bound to NRG1ß and BTC. We show that the structures of the heterodimers bound to either ligand are nearly identical and that in both cases the HER2/HER4 heterodimer interface is less dynamic than those observed in structures of HER2/EGFR and HER2/HER3 heterodimers. In contrast, structures of full-length HER4 homodimers bound to NRG1ß and BTC display more large-scale dynamics mirroring states previously reported for EGFR homodimers. Our structures also reveal the presence of multiple glycan modifications within HER4 ectodomains, modeled for the first time in HER receptors, that distinctively contribute to the stabilization of HER4 homodimer interfaces over those of HER2/HER4 heterodimers.

18.
Elife ; 122024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498590

RESUMO

Human Epidermal growth factor Receptor 4 (HER4 or ERBB4) carries out essential functions in the development and maintenance of the cardiovascular and nervous systems. HER4 activation is regulated by a diverse group of extracellular ligands including the neuregulin (NRG) family and betacellulin (BTC), which promote HER4 homodimerization or heterodimerization with other HER receptors. Important cardiovascular functions of HER4 are exerted via heterodimerization with its close homolog and orphan receptor, HER2. To date structural insights into ligand-mediated HER4 activation have been limited to crystallographic studies of HER4 ectodomain homodimers in complex with NRG1ß. Here, we report cryo-EM structures of near full-length HER2/HER4 heterodimers and full-length HER4 homodimers bound to NRG1ß and BTC. We show that the structures of the heterodimers bound to either ligand are nearly identical and that in both cases the HER2/HER4 heterodimer interface is less dynamic than those observed in structures of HER2/EGFR and HER2/HER3 heterodimers. In contrast, structures of full-length HER4 homodimers bound to NRG1ß and BTC display more large-scale dynamics mirroring states previously reported for EGFR homodimers. Our structures also reveal the presence of multiple glycan modifications within HER4 ectodomains, modeled for the first time in HER receptors, that distinctively contribute to the stabilization of HER4 homodimer interfaces over those of HER2/HER4 heterodimers.


Assuntos
Receptor ErbB-2 , Transdução de Sinais , Humanos , Receptor ErbB-2/metabolismo , Glicosilação , Ligantes , Receptor ErbB-4/metabolismo , Proteínas de Transporte/metabolismo
19.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370785

RESUMO

Stress granules (SGs) are macromolecular assemblies that form under cellular stress. Formation of these condensates is driven by the condensation of RNA and RNA-binding proteins such as G3BPs. G3BPs condense into SGs following stress-induced translational arrest. Three G3BP paralogs (G3BP1, G3BP2A, and G3BP2B) have been identified in vertebrates. However, the contribution of different G3BP paralogs to stress granule formation and stress-induced gene expression changes is incompletely understood. Here, we identified key residues for G3BP condensation such as V11. This conserved amino acid is required for formation of the G3BP-Caprin-1 complex, hence promoting SG assembly. Total RNA sequencing and ribosome profiling revealed that disruption of G3BP condensation corresponds to changes in mRNA levels and ribosome engagement during the integrated stress response (ISR). Moreover, we found that G3BP2B preferentially condenses and promotes changes in mRNA expression under endoplasmic reticulum (ER) stress. Together, this work suggests that stress granule assembly promotes changes in gene expression under cellular stress, which is differentially regulated by G3BP paralogs.

20.
Nature ; 450(7170): 741-4, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18046415

RESUMO

Members of the epidermal growth factor receptor family (EGFR/ERBB1, ERBB2/HER2, ERBB3/HER3 and ERBB4/HER4) are key targets for inhibition in cancer therapy. Critical for activation is the formation of an asymmetric dimer by the intracellular kinase domains, in which the carboxy-terminal lobe (C lobe) of one kinase domain induces an active conformation in the other. The cytoplasmic protein MIG6 (mitogen-induced gene 6; also known as ERRFI1) interacts with and inhibits the kinase domains of EGFR and ERBB2 (refs 3-5). Crystal structures of complexes between the EGFR kinase domain and a fragment of MIG6 show that a approximately 25-residue epitope (segment 1) from MIG6 binds to the distal surface of the C lobe of the kinase domain. Biochemical and cell-based analyses confirm that this interaction contributes to EGFR inhibition by blocking the formation of the activating dimer interface. A longer MIG6 peptide that is extended C terminal to segment 1 has increased potency as an inhibitor of the activated EGFR kinase domain, while retaining a critical dependence on segment 1. We show that signalling by EGFR molecules that contain constitutively active kinase domains still requires formation of the asymmetric dimer, underscoring the importance of dimer interface blockage in MIG6-mediated inhibition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Dimerização , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Modelos Biológicos , Modelos Moleculares , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA