RESUMO
The ability of cell penetrating peptides (CPPs) to deliver biologically relevant cargos into cells is becoming more important as targets in the intracellular space continue to be explored. We have developed two assays based on CPP-dependent, intracellular delivery of TEM-1 ß-lactamase enzyme, a functional biological molecule comparable in size to many protein therapeutics. The first assay focuses on the delivery of full-length ß-lactamase to evaluate the internalization potential of a CPP sequence. The second assay uses a split-protein system where one component of ß-lactamase is constitutively expressed in the cytoplasm of a stable cell line and the other component is delivered by a CPP. The delivery of a split ß-lactamase component evaluates the cytosolic delivery capacity of a CPP. We demonstrate that these assays are rapid, flexible and have potential for use with any cell type and CPP sequence. Both assays are validated using canonical and novel CPPs, with limits of detection from <500 nM to 1 µM. Together, the ß-lactamase assays provide compatible tools for functional characterization of CPP activity and the delivery of biological cargos into cells.
Assuntos
Peptídeos Penetradores de Células/química , Citosol/química , beta-Lactamases/farmacologia , Animais , Células CHO , Linhagem Celular , Cricetulus , Sistemas de Liberação de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , beta-Lactamases/química , beta-Lactamases/genéticaRESUMO
Cell penetrating peptides (CPPs) offer great potential to deliver therapeutic molecules to previously inaccessible intracellular targets. However, many CPPs are inefficient and often leave their attached cargo stranded in the cell's endosome. We report a versatile platform for the isolation of peptides delivering a wide range of cargos into the cytoplasm of cells. We used this screening platform to identify multiple "Phylomer" CPPs, derived from bacterial and viral genomes. These peptides are amenable to conventional sequence optimization and engineering approaches for cell targeting and half-life extension. We demonstrate potent, functional delivery of protein, peptide, and nucleic acid analog cargos into cells using Phylomer CPPs. We validate in vivo activity in the cytoplasm, through successful transport of an oligonucleotide therapeutic fused to a Phylomer CPP in a disease model for Duchenne's muscular dystrophy. This report thus establishes a discovery platform for identifying novel, functional CPPs to expand the delivery landscape of druggable intracellular targets for biological therapeutics.
Assuntos
Peptídeos Penetradores de Células/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Animais , Bacteriófago T7 , Biotinilação , Células CHO , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/toxicidade , Dicroísmo Circular , Cricetulus , Modelos Animais de Doenças , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Distrofia Muscular de Duchenne/tratamento farmacológico , Biblioteca de Peptídeos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismoRESUMO
Protein scaffolds derived from non-immunoglobulin sources are increasingly being adapted and engineered to provide unique binding molecules with a diverse range of targeting specificities. The ColE7 immunity protein (Im7) from Escherichia coli is potentially one such molecule, as it combines the advantages of (i) small size, (ii) stability conferred by a conserved four anti-parallel alpha-helical framework and (iii) availability of variable surface loops evolved to inactivate members of the DNase family of bacterial toxins, forming one of the tightest known protein-protein interactions. Here we describe initial cloning and protein expression of Im7 and its cognate partner the 15 kDa DNase domain of the colicin E7. Both proteins were produced efficiently in E.coli, and their in vitro binding interactions were validated using ELISA and biosensor. In order to assess the capacity of the Im7 protein to accommodate extensive loop region modifications, we performed extensive molecular modelling and constructed a series of loop graft variants, based on transfer of the extended CDR3 loop from the IgG1b12 antibody, which targets the gp120 antigen from HIV-1. Loop grafting in various configurations resulted in chimeric proteins exhibiting retention of the underlying framework conformation, as measured using far-UV circular dichroism spectroscopy. Importantly, there was low but measurable transfer of antigen-specific affinity. Finally, to validate Im7 as a selectable scaffold for the generation of molecular libraries, we displayed Im7 as a gene 3 fusion protein on the surface of fd bacteriophages, the most common library display format. The fusion was successfully detected using an anti-Im7 rabbit polyclonal antibody, and the recombinant phage specifically recognized the immobilized DNase. Thus, Im7 scaffold is an ideal protein display scaffold for the future generation and for the selection of libraries of novel binding proteins.