Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1006719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699829

RESUMO

Studying the population structure and genetic diversity of historical datasets is a proposed use for association analysis. This is particularly important when the dataset contains traits that are time-consuming or costly to measure. A set of 96 elite barley genotypes, developed from eight breeding programs of the Western Canadian Cooperative Trials were used in the current study. Genetic diversity, allelic variation, and linkage disequilibrium (LD) were investigated using 5063 high-quality SNP markers via the Illumina 9K Barley Infinium iSelect SNP assay. The distribution of SNPs markers across the barley genome ranged from 449 markers on chromosome 1H to 1111 markers on chromosome 5H. The average polymorphism information content (PIC) per locus was 0.275 and ranged from 0.094 to 0.375. Bayesian clustering in STRUCTURE and principal coordinate analysis revealed that the populations are differentiated primarily due to the different breeding program origins and ear-row type into five subpopulations. Analysis of molecular variance based on PhiPT values suggested that high values of genetic diversity were observed within populations and accounted for 90% of the total variance. Subpopulation 5 exhibited the most diversity with the highest values of the diversity indices, which represent the breeding program gene pool of AFC, AAFRD, AU, and BARI. With increasing genetic distance, the LD values, expressed as r2, declined to below the critical r2 = 0.18 after 3.91 cM, and the same pattern was observed on each chromosome. Our results identified an important pattern of genetic diversity among the Canadian barley panel that was proposed to be representative of target breeding programs and may have important implications for association mapping in the future. This highlight, that efforts to identify novel variability underlying this diversity may present practical breeding opportunities to develop new barley genotypes.

2.
Ann Bot ; 105(7): 1171-82, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20308048

RESUMO

BACKGROUND AND AIMS: Nitrogen-use efficiency (NUE) of cereals needs to be improved by nitrogen (N) management, traditional plant breeding methods and/or biotechnology, while maintaining or, optimally, increasing crop yields. The aims of this study were to compare spring-barley genotypes grown on different nitrogen levels in field and growth-chamber conditions to determine the effects on N uptake (NUpE) and N utilization efficiency (NUtE) and ultimately, NUE. METHODS: Morphological characteristics, seed yield and metabolite levels of 12 spring barley (Hordeum vulgare) genotypes were compared when grown at high and low nitrogen levels in field conditions during the 2007 and 2008 Canadian growing seasons, and in potted and hydroponic growth-chamber conditions. Genotypic NUpE, NUtE and NUE were calculated and compared between field and growth-chamber environments. KEY RESULTS: Growth chamber and field tests generally showed consistent NUE characteristics. In the field, Vivar, Excel and Ponoka, showed high NUE phenotypes across years and N levels. Vivar also had high NUE in growth-chamber trials, showing NUE across complex to simplistic growth environments. With the high NUE genotypes grown at low N in the field, NUtE predominates over NUpE. N metabolism-associated amino acid levels were different between roots (elevated glutamine) and shoots (elevated glutamate and alanine) of hydroponically grown genotypes. In field trials, metabolite levels were different between Kasota grown at high N (elevated glutamine) and Kasota at low N plus Vivar at either N condition. CONCLUSIONS: Determining which trait(s) or gene(s) to target to improve barley NUE is important and can be facilitated using simplified growth approaches to help determine the NUE phenotype of various genotypes. The genotypes studied showed similar growth and NUE characteristics across field and growth-chamber tests demonstrating that simplified, low-variable growth environments can help pinpoint genetic targets for improving spring barley NUE.


Assuntos
Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Nitrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA