Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 19(41): 8968-8987, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34596646

RESUMO

In the area of cancer research, the development of new and potent inhibitors of anti-apoptotic proteins is a very active and promising topic. The small molecule MIM1 has been reported earlier as one of the first selective inhibitors of the anti-apoptotic protein Mcl-1. In the present paper, we first revised the structure of this molecule based on extensive physicochemical analyses. Then we designed and synthesized a focused library of analogues for the corrected structure of MIM1. Next, these molecules were subjected to a panel of in cellulo biological studies, allowing the identification of dual Bcl-xL/Mcl-1 inhibitors, as well as selective Mcl-1 inhibitors. These results have been complemented by fluorescence polarization assays with the Mcl-1 protein. Preliminary structure-activity relationships were discussed and extensive molecular modelling studies allowed us to propose a rationale for the biological activity of this series of new inhibitors, in particular for the selectivity of inhibition of Mcl-1 versus Bcl-xL.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides
2.
Chemistry ; 19(18): 5742-57, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23447398

RESUMO

Treatment of [Cp*(dppe)Fe-C≡C-TTFMe3] (1) with Ag[PF6] (3 equiv) in DMF provides the binuclear complex [Cp*(dppe)Fe=C=C=TTFMe2 =CH-CH=TTFMe2 =C=C=Fe(dppe)Cp*][PF6]2 (2[PF6 ]2) isolated as a deep-blue powder in 69 % yield. EPR monitoring of the reaction and comparison of the experimental and calculated EPR spectra allowed the identification of the radical salt [Cp*(dppe)Fe=C=C=TTFMe2 =CH][PF6]2 ([1-CH][PF6]) an intermediate of the reaction, which results from the activation of the methyl group attached in vicinal position with respect to the alkynyl-iron on the TTF ligand by the triple oxidation of 1 leading to its deprotonation by the solvent. The dimerization of [1-CH][PF6] through carbon-carbon bond formation provides 2[PF6]2. The cyclic voltammetry (CV) experiments show that 2[PF6]2 is subject to two sequential well-reversible one-electron reductions yielding the complexes 2[PF6] and 2. The CV also shows that further oxidation of 2[PF6]2 generates 2[PF6]n (n=3-6) at the electrode. Treatment of 2[PF6]2 with KOtBu provides 2[PF6] and 2 as stable powders. The salts 2[PF6] and 2[PF6]2 were characterized by XRD. The electronic structures of 2(n+) (n=0-2) were computed. The new complexes were also characterized by NMR, IR, Mössbauer, EPR, UV/Vis and NIR spectroscopies. The data show that the three complexes 2[PF6]n are iron(II) derivatives in the ground state. In the solid state, the dication 2(2+) is diamagnetic and has a bis(allenylidene-iron) structure with one positive charge on each iron building block. In solution, as a result of the thermal motion of the metal-carbon backbone, the triplet excited state becomes thermally accessible and equilibrium takes place between singlet and triplet states. In 2[PF6], the charge and the spin are both symmetrically distributed on the carbon bridge and only moderately on the iron and TTFMe2 electroactive centers.

3.
J Am Chem Soc ; 134(3): 1710-4, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22176039

RESUMO

Scanning tunneling microscopy (STM) is used to study two dinuclear organometallic molecules, meta-Fe2 and para-Fe2, which have identical molecular formulas but differ in the geometry in which the metal centers are linked through a central phenyl ring. Both molecules show symmetric electron density when imaged with STM under ultrahigh-vacuum conditions at 77 K. Chemical oxidation of these molecules results in mixed-valence species, and STM images of mixed-valence meta-Fe2 show pronounced asymmetry in electronic state density, despite the structural symmetry of the molecule. In contrast, images of mixed-valence para-Fe2 show that the electronic state density remains symmetric. Images are compared to constrained density functional (CDFT) calculations and are consistent with full localization of charge for meta-Fe2 on to a single metal center, as compared with charge delocalization over both metal centers for para-Fe2. The conclusion is that electronic coupling between the two metal centers occurs through the bonds of the organic linker, and through-space coupling is less important. In addition, the observation that mixed-valence para-Fe2 is delocalized shows that electron localization in meta-Fe2 is not determined by interactions with the Au(111) substrate or the position of neighboring solvent molecules or counterion species.

4.
Inorg Chem ; 50(24): 12601-22, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22070368

RESUMO

The role of the nitrogen atom on the electronic and magnetic couplings of the mono-oxidized and bi-oxidized pyridine-containing complex models [2,6-{Cp(dpe)Fe-C≡C-}(2)(NC(5)H(3))](n+) and [3,5-{Cp(dpe)Fe-C≡C-}(2)(NC(5)H(3))](n+) is theoretically tackled with the aid of density-functional theory (DFT) and multireference configuration interaction (MR-CI) calculations. Results are analyzed and compared to those obtained for the reference complex [1,3-{Cp*(dppe)Fe-C≡C-)}(2)(C(6)H(4))](n+). The mono-oxidized species show an interesting behavior at the borderline between spin localization and delocalization and one through-bond communication path among the two involving the central ring, is favored. Investigation of the spin state of the dicationic complexes indicates ferromagnetic coupling, which can differ in magnitude from one complex to the other. Very importantly, electronic and magnetic properties of these species strongly depend not only upon the location of the nitrogen atom in the ring versus that of the organometallic end-groups but also upon the architectural arrangement of one terminus, with respect to the other and/or vis-à-vis the central ring. To help validate the theoretical results, the related families of compounds [1,3-{Cp*(dppe)Fe-C≡C-)}(2)(C(6)H(4))](n+), [2,6-{Cp*(dppe)Fe-C≡C-}(2)(NC(5)H(3))](n+), [3,5-{Cp*(dppe)Fe-C≡C-}(2)(NC(5)H(3))](n+) (n = 0-2) were experimentally synthesized and characterized. Electrochemical, spectroscopic (infrared (IR), Mössbauer), electronic (near-infrared (NIR)), and magnetic properties (electron paramagnetic resonance (EPR), superconducting quantum interference device (SQUID)) are discussed and interpreted in the light of the theoretical data. The set of data obtained allows for many strong conclusions to be drawn. A N atom in the long branch increases the ferromagnetic interaction between the two Fe(III) spin carriers (J > 500 cm(-1)), whereas, when placed in the short branch, it dramatically reduces the magnetic exchange in the di-oxidized species (J = 2.14(5) cm(-1)). In the mixed-valence compounds, when the N atom is positioned on the long branch, the intermediate excited state is higher in energy than the different ground-state conformers and the relaxation process provides exclusively the Fe(II)/Fe(III) localized system (H(ab) ≠ 0). Positioning the N atom on the short branch modifies the energy profile and the diabatic mediating state lies just above the reactant and product diabatic states. Consequently, the LMCT transition becomes less energetic than the MMCT transition. Here, the direct coupling does not occur (H(ab) = 0) and only the coupling through the bridge (c) and the reactant (a) and product (b) diabatic states is operating (H(ac) = H(bc) ≠ 0).

5.
J Am Chem Soc ; 132(38): 13519-24, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-20822142

RESUMO

{Cp*(dppe)Fe(C≡C-)}(2)(1,3-C(6)H(4)) is studied both as a neutral molecule, Fe(II)-Fe(II), and as a mixed-valence complex, Fe(II)-Fe(III). Scanning tunneling microscopy (STM) is used to image these species at 77 K under ultrahigh-vacuum conditions. The neutral molecule Fe(II)-Fe(II) has a symmetric, "dumbbell" appearance in STM images, while the mixed-valence complex Fe(II)-Fe(III) demonstrates an asymmetric, bright-dim double-dot structure. This asymmetry results from localization of the electron to one of the iron-ligand centers, a result which is confirmed through comparison to theoretical STM images calculated using constrained density-functional theory (CDFT). The observation of charge localization in mixed-valence complexes outside of the solution environment opens up new avenues for the control and patterning of charge on surfaces, with potential applications in smart materials and molecular electronic devices.

6.
J Am Chem Soc ; 130(51): 17372-83, 2008 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19053464

RESUMO

Treatment of the triflate complex Cp*(dppe)FeOTf [12; Cp* = eta(5)-C(5)(CH(3))(5), dppe = 1,2-bis(diphenylphosphino)ethane, OTf = CF(3)SO(3)] with an excess of HC[triple bond]C-(Si(CH(3))(2))(x)-C[triple bond]CH (x = 2-4) in diethyl ether provides the binuclear bis(vinylidene) derivatives [Cp*(dppe)Fe=C=CH(Si(CH(3))(2))(x)CH=C=Fe(dppe)Cp*][OTf](2) (x = 2, 13; x = 3, 14; x = 4, 15), which were isolated as ochre solids and rapidly characterized by FT-IR, (1)H, (31)P, and (13)C NMR spectroscopies. The complexes 13-15 were reacted with potassium tert-butoxide to afford the bis(alkynediyl) complexes [Cp*(dppe)Fe-C[triple bond]C(Si(CH(3))(2))(x)C[triple bond]C-Fe(dppe)Cp*] (x = 2, 1; x = 3, 2; x = 4, 3), which were isolated as orange powders in yields ranging from 76 to 91%. The IR, cyclic voltammetry, and UV-vis data obtained for 1-3 and the X-ray crystal structures determined for 1 and 3 reveal the importance of the sigma-pi conjugation (hyperconjugation) between the Si-Si sigma bond and the adjacent C[triple bond]C pi-symmetric orbitals in the description of the electronic structure of the ground state of these complexes. When reacted at low temperature with 2 equiv of [(C(5)H(5))(2)Fe]X or AgX [X = BPh(4), B(3,5-(CF(3))(2)C(6)H(3))(4))], compounds 1-3 provide 1[X](2), 2[X](2), and 3[X](2), which can be isolated and stored below -20 degrees C. EPR spectroscopy and magnetization measurements established that the superexchange interaction propagates through the Si-Si bonds (J = -0.97(2) cm(-1) for 3[X](2)). UV-vis-near-IR spectra were obtained with an optically transparent thin-layer electrosynthetic (OTTLE) cell for 1-3[OTf](n) (n = 0-2). A band with a maximum that increases from 6400 cm(-1) (1[OTf]) to 8500 cm(-1) (3[OTf]) observed for the mixed-valence species was ascribed to intervalence charge transfer evidencing photodriven electron transfer through the carbon-silicon hybrid connectors with H(ab) parameters ranging from 64 to 285 cm(-1).

7.
Inorg Chem ; 46(22): 9036-8, 2007 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-17914815

RESUMO

We report in this Communication the isolation and characterization, including structure determinations, of 2,2',6',2"-terpyridine (2) and 2,2'-bipyridine (3) ligands bearing two redox-active "(eta2-dppe)(eta5-C5Me5)FeC[triple bond]C-" moieties grafted to the 5 and 5" positions of terpy or to the 5 and 5' positions of bipy. These "metalloligands" have been complexed with Ru(II) and Mo(0), providing new heterotrinuclear complexes displaying intense absorptions around 700 and 600 nm, respectively, for the Fe2Ru/terpy and Fe2Mo/bipy species. In both cases, the Fe(II)/Fe(III) oxidation potentials of the free ligands became more positive by more than 50 mV upon complexation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA