Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 14(3): 5118-35, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24625738

RESUMO

A computational model for radio wave propagation through tree orchards is presented. Trees are modeled as collections of branches, geometrically approximated by cylinders, whose dimensions are determined on the basis of measurements in a cherry orchard. Tree canopies are modeled as dielectric spheres of appropriate size. A single row of trees was modeled by creating copies of a representative tree model positioned on top of a rectangular, lossy dielectric slab that simulated the ground. The complete scattering model, including soil and trees, enhanced by periodicity conditions corresponding to the array, was characterized via a commercial computational software tool for simulating the wave propagation by means of the Finite Element Method. The attenuation of the simulated signal was compared to measurements taken in the cherry orchard, using two ZigBee receiver-transmitter modules. Near the top of the tree canopies (at 3 m), the predicted attenuation was close to the measured one-just slightly underestimated. However, at 1.5 m the solver underestimated the measured attenuation significantly, especially when leaves were present and, as distances grew longer. This suggests that the effects of scattering from neighboring tree rows need to be incorporated into the model. However, complex geometries result in ill conditioned linear systems that affect the solver's convergence.


Assuntos
Redes de Comunicação de Computadores , Simulação por Computador , Meio Ambiente , Árvores , Tecnologia sem Fio , Desenho Assistido por Computador , Prunus , Processamento de Sinais Assistido por Computador
2.
Front Plant Sci ; 8: 1053, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676810

RESUMO

In orchards, the variations of fruit quality and its determinants are crucial for resource effective measures. In the present study, a drip-irrigated plum production (Prunus domestica L. "Tophit plus"/Wavit) located in a semi-humid climate was studied. Analysis of the apparent electrical conductivity (ECa) of soil showed spatial patterns of sand lenses in the orchard. Water status of sample trees was measured instantaneously by means of leaf water potential, Ψleaf [MPa], and for all trees by thermal imaging of canopies and calculation of the crop water stress index (CWSI). Methods for determining CWSI were evaluated. A CWSI approach calculating canopy and reference temperatures from the histogram of pixels from each image itself was found to suit the experimental conditions. Soil ECa showed no correlation with specific leaf area ratio and cumulative water use efficiency (WUEc) derived from the crop load. The fruit quality, however, was influenced by physiological drought stress in trees with high crop load and, resulting (too) high WUEc, when fruit driven water demand was not met. As indicated by analysis of variance, neither ECa nor the instantaneous CWSI could be used as predictors of fruit quality, while the interaction of CWSI and WUEc did succeed in indicating significant differences. Consequently, both WUEc and CWSI should be integrated in irrigation scheduling for positive impact on fruit quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA