RESUMO
This study presents a comprehensive analysis of nickel-phosphine complexes, specifically Ni(PH3)2(OCCH2), Ni(PH3)2(H2CCO), Ni(PH3)2(H2CCCH2), Ni(PH3)2(NNCH2), and Ni(PH3)2(η1-H2CNN). Utilizing ETS-NOCV analysis, we explored orbital energy decomposition and the Hirshfeld charges of the ligands, providing insights into the electronic structures and donor-acceptor interactions within these complexes. The interactions in the ketene and allene complexes exhibit similar deformation densities and NOCV orbital shapes to those calculated for Ni(PH3)2(NNCH2), indicating consistent interaction characteristics across these complexes. The total interaction energy for all η2 complexes is observed to be over 60 kcal/mol, slightly exceeding that of the analogous carbon dioxide complex reported earlier. Furthermore, the study highlights the stronger back-donation as compared to donor interactions across all η2 complexes. This is further corroborated by Hirshfeld analysis, revealing the charge distribution dynamics within the ligand fragments. The research offers new perspectives on the electron distribution and interaction energies in nickel-phosphine complexes, contributing to a deeper understanding of their catalytic and reactive behaviors.
RESUMO
Novel, elongated, resorcine[4]arene-based cavitands were synthesized via various consecutive reaction steps, including homogeneous catalytic aryloxy- and azidocarbonylation processes. The effects of carbon monoxide pressure and temperature on the conversion were examined in aryloxycarbonylation. It was revealed that a reaction temperature of 100 °C is required to achieve complete conversion both with monodentate (PPh3) and bidentate (Xantphos) phosphines at different carbon monoxide pressures (1-40 bar). Using ten different phenols as O-nucleophiles, partial hydrolysis of the esters to the corresponding carboxylic acids took place-i.e., 58-90% chemoselectivities toward esters were obtained. Moreover, the influences of temperature, reaction time and the catalyst ratio on the selectivity and conversion were described in the case of azidocarbonylation reaction. The formation of the acyl azide with high chemoselevtivity can be achieved at room temperature only. The higher reaction temperatures (50 °C) and higher catalyst loadings favor the formation of the primary amide. The characterization of the target compounds (esters and acyl azides) was carried out by IR and 1H and 13C NMR. The discussion of the influences of various parameters is based on in situ NMR investigations.
Assuntos
Monóxido de Carbono , Paládio , Paládio/química , Monóxido de Carbono/química , Catálise , Azidas/química , Ésteres/químicaRESUMO
Palladium-catalyzed carbonylation reactions, in the presence of nucleophiles, serve as very potent tools for the conversion of aryl and alkenyl halides or halide equivalents to carboxylic acid derivatives or to other carbonyl compounds. There are a vast number of applications for the synthesis of simple building blocks as well as for the functionalization of biologically important skeletons. This review covers the history of carbonylative coupling reactions in Hungary between the years 1994 and 2021.
RESUMO
The mechanism of the carbonylation of diazomethane in the presence of iron-carbonyl-phosphine catalysts has been investigated by means of DFT calculations at the M06/def-TZVP//B97D3/def2-TZVP level of theory, in combination with the SMD solvation method. The reaction rate is determined by the formation of the coordinatively unsaturated doublet-state Fe(CO)3(P) precursor followed by the diazoalkane coordination and the N2 extrusion. The free energy of activation is predicted to be 18.5 and 28.2 kcal/mol for the PF3 and PPh3 containing systems, respectively. Thus, in the presence of less basic P-donor ligands with stronger π-acceptor properties, a significant increase in the reaction rate can be expected. According to energy decomposition analysis combined with natural orbitals of chemical valence (EDA-NOCV) calculations, diazomethane in the Fe(CO)3(phosphine)(η1-CH2N2) adduct reveals a π-donor-π-acceptor type of coordination.
Assuntos
Hidrogenase/química , Compostos de Ferro/química , Proteínas Ferro-Enxofre/química , Ferro/química , Catálise , Simulação por Computador , Diazometano/química , Elétrons , Ligantes , Metano/análogos & derivados , Metano/química , Modelos Moleculares , Estrutura Molecular , Níquel/química , Paládio/química , Fosfinas/química , Fósforo/química , Teoria QuânticaRESUMO
The applicability of two types of transition-metal carbonyl complexes as appropriate candidates for computationally derived Tolman's ligand electronic parameters were examined with density functional theory (DFT) calculations employing the B97D3 functional. Both Pd(0)L2(CO) and HRh(I)L2(CO) complexes correlated well with the experimental Tolman Electronic Parameter scale. For direct comparison of the electronic effects of diphosphines with those of monophosphines, the palladium-containing system is recommended. The t r a n s influence of various phosphines did not show a major difference, but the decrease of the H-Rh-P angle from linear can cause a significant change.