Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 115(12): 2286-2294, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30527448

RESUMO

It is widely believed that the folding of the chromosome in the nucleus has a major effect on genetic expression. For example, coregulated genes in several species have been shown to colocalize in space despite being far away on the DNA sequence. In this manuscript, we present a new, to our knowledge, method to model the three-dimensional structure of the chromosome in live cells based on DNA-DNA interactions measured in high-throughput chromosome conformation capture experiments and genome architecture mapping. Our approach incorporates a polymer model and directly uses the contact probabilities measured in high-throughput chromosome conformation capture experiments and genome architecture mapping experiments rather than estimates of average distances between genomic loci. Specifically, we model the chromosome as a Gaussian polymer with harmonic interactions and extract the coupling coefficients best reproducing the experimental contact probabilities. In contrast to existing methods, we give an exact expression of the contact probabilities at thermodynamic equilibrium. The Gaussian effective model reconstructed with our method reproduces experimental contacts with high accuracy. We also show how Brownian dynamics simulations of our reconstructed Gaussian effective model can be used to study chromatin organization and possibly give some clue about its dynamics.


Assuntos
Cromossomos/genética , Cromossomos/metabolismo , Genômica , Modelos Moleculares , Polímeros/metabolismo , Algoritmos , Cromossomos/química , Método de Monte Carlo , Polímeros/química
2.
Nucleic Acids Res ; 44(W1): W77-82, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27151196

RESUMO

GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression. GREAT tools allow users to systematically detect regular patterns along co-functional genomic features in an automatic way consisting of three individual steps and respective interactive visualizations. In addition to the complete analysis of regularities, GREAT tools enable the use of periodicity and position information for improving the prediction of transcription factor binding sites using a multi-view machine learning approach. The outcome of this integrative approach features a multivariate analysis of the interplay between the location of a gene and its regulatory sequence. GREAT results are plotted in web interactive graphs and are available for download either as individual plots, self-contained interactive pages or as machine readable tables for downstream analysis. The GREAT portal can be reached at the following URL https://absynth.issb.genopole.fr/GREAT and each individual GREAT tool is available for downloading.


Assuntos
Bacillus subtilis/genética , Escherichia coli/genética , Genoma Bacteriano , Fatores de Transcrição/genética , Interface Usuário-Computador , Bacillus subtilis/metabolismo , Sítios de Ligação , Mapeamento Cromossômico , Gráficos por Computador , Escherichia coli/metabolismo , Internet , Aprendizado de Máquina , Análise Multivariada , Ligação Proteica , Fatores de Transcrição/metabolismo
3.
Biophys J ; 110(1): 51-62, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26745409

RESUMO

To characterize the thermodynamical equilibrium of DNA chains interacting with a solution of nonspecific binding proteins, we implemented a Flory-Huggins free energy model. We explored the dependence on DNA and protein concentrations of the DNA collapse. For physiologically relevant values of the DNA-protein affinity, this collapse gives rise to a biphasic regime with a dense and a dilute phase; the corresponding phase diagram was computed. Using an approach based on Hamiltonian paths, we show that the dense phase has either a molten globule or a crystalline structure, depending on the DNA bending rigidity, which is influenced by the ionic strength. These results are valid at the thermodynamical equilibrium and therefore should be consistent with many biological processes, whose characteristic timescales range typically from 1 ms to 10 s. Our model may thus be applied to biological phenomena that involve DNA-binding proteins, such as DNA condensation with crystalline order, which occurs in some bacteria to protect their chromosome from detrimental factors; or transcription initiation, which occurs in clusters called transcription factories that are reminiscent of the dense phase characterized in this study.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Simulação de Dinâmica Molecular , Entropia , Conformação de Ácido Nucleico
4.
BMC Bioinformatics ; 17 Suppl 5: 191, 2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27294345

RESUMO

BACKGROUND: Genome layout and gene regulation appear to be interdependent. Understanding this interdependence is key to exploring the dynamic nature of chromosome conformation and to engineering functional genomes. Evidence for non-random genome layout, defined as the relative positioning of either co-functional or co-regulated genes, stems from two main approaches. Firstly, the analysis of contiguous genome segments across species, has highlighted the conservation of gene arrangement (synteny) along chromosomal regions. Secondly, the study of long-range interactions along a chromosome has emphasised regularities in the positioning of microbial genes that are co-regulated, co-expressed or evolutionarily correlated. While one-dimensional pattern analysis is a mature field, it is often powerless on biological datasets which tend to be incomplete, and partly incorrect. Moreover, there is a lack of comprehensive, user-friendly tools to systematically analyse, visualise, integrate and exploit regularities along genomes. RESULTS: Here we present the Genome REgulatory and Architecture Tools SCAN (GREAT:SCAN) software for the systematic study of the interplay between genome layout and gene expression regulation. GREAT: SCAN is a collection of related and interconnected applications currently able to perform systematic analyses of genome regularities as well as to improve transcription factor binding sites (TFBS) and gene regulatory network predictions based on gene positional information. CONCLUSIONS: We demonstrate the capabilities of these tools by studying on one hand the regular patterns of genome layout in the major regulons of the bacterium Escherichia coli. On the other hand, we demonstrate the capabilities to improve TFBS prediction in microbes. Finally, we highlight, by visualisation of multivariate techniques, the interplay between position and sequence information for effective transcription regulation.


Assuntos
Genoma , Software , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Redes Reguladoras de Genes/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
5.
Biophys J ; 109(1): 135-43, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26153710

RESUMO

Supercoiled DNA polymer models for which the torsional energy depends on the total twist of molecules (Tw) are a priori well suited for thermodynamic analysis of long molecules. So far, nevertheless, the exact determination of Tw in these models has been based on a computation of the writhe of the molecules (Wr) by exploiting the conservation of the linking number, Lk=Tw+Wr, which reflects topological constraints coming from the helical nature of DNA. Because Wr is equal to the number of times the main axis of a DNA molecule winds around itself, current Monte Carlo algorithms have a quadratic time complexity, O(L(2)), with respect to the contour length (L) of the molecules. Here, we present an efficient method to compute Tw exactly, leading in principle to algorithms with a linear complexity, which in practice is O(L(1.2)). Specifically, we use a discrete wormlike chain that includes the explicit double-helix structure of DNA and where the linking number is conserved by continuously preventing the generation of twist between any two consecutive cylinders of the discretized chain. As an application, we show that long (up to 21 kbp) linear molecules stretched by mechanical forces akin to magnetic tweezers contain, in the buckling regime, multiple and branched plectonemes that often coexist with curls and helices, and whose length and number are in good agreement with experiments. By attaching the ends of the molecules to a reservoir of twists with which these can exchange helix turns, we also show how to compute the torques in these models. As an example, we report values that are in good agreement with experiments and that concern the longest molecules that have been studied so far (16 kbp).


Assuntos
DNA Super-Helicoidal/química , Termodinâmica , Algoritmos , Simulação por Computador , Modelos Químicos , Modelos Genéticos , Método de Monte Carlo , Torção Mecânica
6.
Nucleic Acids Res ; 41(3): 1406-15, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23241390

RESUMO

Conventional approaches to predict transcriptional regulatory interactions usually rely on the definition of a shared motif sequence on the target genes of a transcription factor (TF). These efforts have been frustrated by the limited availability and accuracy of TF binding site motifs, usually represented as position-specific scoring matrices, which may match large numbers of sites and produce an unreliable list of target genes. To improve the prediction of binding sites, we propose to additionally use the unrelated knowledge of the genome layout. Indeed, it has been shown that co-regulated genes tend to be either neighbors or periodically spaced along the whole chromosome. This study demonstrates that respective gene positioning carries significant information. This novel type of information is combined with traditional sequence information by a machine learning algorithm called PreCisIon. To optimize this combination, PreCisIon builds a strong gene target classifier by adaptively combining weak classifiers based on either local binding sequence or global gene position. This strategy generically paves the way to the optimized incorporation of any future advances in gene target prediction based on local sequence, genome layout or on novel criteria. With the current state of the art, PreCisIon consistently improves methods based on sequence information only. This is shown by implementing a cross-validation analysis of the 20 major TFs from two phylogenetically remote model organisms. For Bacillus subtilis and Escherichia coli, respectively, PreCisIon achieves on average an area under the receiver operating characteristic curve of 70 and 60%, a sensitivity of 80 and 70% and a specificity of 60 and 56%. The newly predicted gene targets are demonstrated to be functionally consistent with previously known targets, as assessed by analysis of Gene Ontology enrichment or of the relevant literature and databases.


Assuntos
Inteligência Artificial , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Sítios de Ligação , Efeitos da Posição Cromossômica , Genômica/métodos
7.
Nucleic Acids Res ; 40(16): 7718-27, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22705794

RESUMO

The principles underlying the architectural landscape of chromatin beyond the nucleosome level in living cells remains largely unknown despite its potential to play a role in mammalian gene regulation. We investigated the three-dimensional folding of a 1 Mbp region of human chromosome 11 containing the ß-globin genes by integrating looping interactions of the CCCTC-binding insulator protein CTCF determined comprehensively by chromosome conformation capture (3C) into a polymer model of chromatin. We find that CTCF-mediated cell type-specific interactions in erythroid cells are organized to favor contacts known to occur in vivo between the ß-globin locus control region (LCR) and genes. In these cells, the modeled ß-globin domain folds into a globule with the LCR and the active globin genes on the periphery. In contrast, in non-erythroid cells, the globule is less compact with few but dominant CTCF interactions driving the genes away from the LCR. This leads to a decrease in contact frequencies that can exceed 1000-fold depending on the stiffness of the chromatin and the exact position of the genes. Our findings show that an ensemble of CTCF contacts functionally affects spatial distances between control elements and target genes contributing to chromosomal organization required for transcription.


Assuntos
Cromossomos Humanos Par 11/química , Regulação da Expressão Gênica , Proteínas Repressoras/metabolismo , Transcrição Gênica , Globinas beta/genética , Fator de Ligação a CCCTC , Linhagem Celular , Cromatina/química , Cromossomos Humanos Par 11/metabolismo , Loci Gênicos , Genoma Humano , Humanos , Células K562 , Região de Controle de Locus Gênico , Globinas beta/biossíntese
8.
Nat Genet ; 31(1): 60-3, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11967534

RESUMO

Interpretation of high-throughput biological data requires a knowledge of the design principles underlying the networks that sustain cellular functions. Of particular importance is the genetic network, a set of genes that interact through directed transcriptional regulation. Genes that exert a regulatory role encode dedicated transcription factors (hereafter referred to as regulating proteins) that can bind to specific DNA control regions of regulated genes to activate or inhibit their transcription. Regulated genes may themselves act in a regulatory manner, in which case they participate in a causal pathway. Looping pathways form feedback circuits. Because a gene can have several connections, circuits and pathways may crosslink and thus represent connected components. We have created a graph of 909 genetically or biochemically established interactions among 491 yeast genes. The number of regulating proteins per regulated gene has a narrow distribution with an exponential decay. The number of regulated genes per regulating protein has a broader distribution with a decay resembling a power law. Assuming in computer-generated graphs that gene connections fulfill these distributions but are otherwise random, the local clustering of connections and the number of short feedback circuits are largely underestimated. This deviation from randomness probably reflects functional constraints that include biosynthetic cost, response delay and differentiative and homeostatic regulation.


Assuntos
Saccharomyces cerevisiae/genética , Transcrição Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genes Reguladores , Modelos Genéticos
9.
PLoS Comput Biol ; 6(2): e1000678, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20169181

RESUMO

Transcriptional activity has been shown to relate to the organization of chromosomes in the eukaryotic nucleus and in the bacterial nucleoid. In particular, highly transcribed genes, RNA polymerases and transcription factors gather into discrete spatial foci called transcription factories. However, the mechanisms underlying the formation of these foci and the resulting topological order of the chromosome remain to be elucidated. Here we consider a thermodynamic framework based on a worm-like chain model of chromosomes where sparse designated sites along the DNA are able to interact whenever they are spatially close by. This is motivated by recurrent evidence that there exist physical interactions between genes that operate together. Three important results come out of this simple framework. First, the resulting formation of transcription foci can be viewed as a micro-phase separation of the interacting sites from the rest of the DNA. In this respect, a thermodynamic analysis suggests transcription factors to be appropriate candidates for mediating the physical interactions between genes. Next, numerical simulations of the polymer reveal a rich variety of phases that are associated with different topological orderings, each providing a way to increase the local concentrations of the interacting sites. Finally, the numerical results show that both one-dimensional clustering and periodic location of the binding sites along the DNA, which have been observed in several organisms, make the spatial co-localization of multiple families of genes particularly efficient.


Assuntos
Cromossomos/química , DNA/química , Conformação de Ácido Nucleico , Sítios de Ligação , Cromossomos/genética , Cromossomos/metabolismo , Simulação por Computador , DNA/genética , DNA/metabolismo , Genoma , Modelos Genéticos , Modelos Moleculares , Modelos Estatísticos , Método de Monte Carlo , Termodinâmica , Transcrição Gênica
10.
Med Sci (Paris) ; 25 Spec No 2: 39-42, 2009 May.
Artigo em Francês | MEDLINE | ID: mdl-19852087

RESUMO

Integrative biology currently undergoes a deep renewal as we witness the increasing influence of systems biology, which explores life's logic, and of synthetic biology, which exploits it.


Assuntos
Biologia/métodos , Genética/tendências , Medicina Integrativa/métodos , Biologia de Sistemas/tendências , Animais , Biologia/tendências , Biotecnologia/métodos , Biotecnologia/tendências , Escherichia coli/genética , Humanos , Medicina Integrativa/tendências
11.
PLoS One ; 14(5): e0216705, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31095607

RESUMO

The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse, zebrafish and nematode) and techniques. For example, we show that OSCP1, which has previously been implicated in two distinct non-ciliary processes, causes ciliogenic and ciliopathy-associated tissue phenotypes when depleted in zebrafish. The candidate list forms the basis of CiliaCarta, a comprehensive ciliary compendium covering 956 genes. The resource can be used to objectively prioritize candidate genes in whole exome or genome sequencing of ciliopathy patients and can be accessed at http://bioinformatics.bio.uu.nl/john/syscilia/ciliacarta/.


Assuntos
Cílios/genética , Genômica , Animais , Teorema de Bayes , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Anotação de Sequência Molecular , Fenótipo , Reprodutibilidade dos Testes , Células Receptoras Sensoriais/metabolismo , Peixe-Zebra/genética
13.
DNA Res ; 25(6): 641-653, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30256918

RESUMO

DNA replication is coupled to growth by an unknown mechanism. Here, we investigated this coupling by analyzing growth and replication in 15 mutants of central carbon metabolism (CCM) cultivated in three rich media. In about one-fourth of the condition tested, defects in replication resulting from changes in initiation or elongation were detected. This uncovered 11 CCM genes important for replication and showed that some of these genes have an effect in one, two or three media. Additional results presented here and elsewhere (Jannière, L., Canceill, D., Suski, C., et al. (2007), PLoS One, 2, e447.) showed that, in the LB medium, the CCM genes important for DNA elongation (gapA and ackA) are genetically linked to the lagging strand polymerase DnaE while those important for initiation (pgk and pykA) are genetically linked to the replication enzymes DnaC (helicase), DnaG (primase) and DnaE. Our work thus shows that the coupling between growth and replication involves multiple, medium-dependent links between CCM and replication. They also suggest that changes in CCM may affect initiation by altering the functional recruitment of DnaC, DnaG and DnaE at the chromosomal origin, and may affect elongation by altering the activity of DnaE at the replication fork. The underlying mechanism is discussed.


Assuntos
Bacillus subtilis/genética , Carbono/metabolismo , Replicação do DNA , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Meios de Cultura , Mutação
14.
BMC Bioinformatics ; 8: 433, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17996051

RESUMO

BACKGROUND: An appropriate choice of the modeling formalism from the broad range of existing ones may be crucial for efficiently describing and analyzing biological systems. RESULTS: We propose a new unifying and incremental formalism for the representation and modeling of biological interaction networks. This formalism allows automated translations into other formalisms, thus enabling a thorough study of the dynamic properties of a biological system. As a first illustration, we propose a translation into the R. Thomas' multivalued logical formalism which provides a possible semantics; a methodology for constructing such models is presented on a classical benchmark: the lambda phage genetic switch. We also show how to extract from our model a classical ODE description of the dynamics of a system. CONCLUSION: This approach provides an additional level of description between the biological and mathematical ones. It yields, on the one hand, a knowledge expression in a form which is intuitive for biologists and, on the other hand, its representation in a formal and structured way.


Assuntos
Algoritmos , Fenômenos Fisiológicos Celulares , Modelos Biológicos , Biologia de Sistemas/métodos , Animais , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Simulação por Computador , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Genes de Troca/fisiologia , Humanos , Dinâmica não Linear , Mapeamento de Interação de Proteínas/métodos , Sensibilidade e Especificidade , Transdução de Sinais , Processos Estocásticos , Interface Usuário-Computador
15.
Mol Biol Cell ; 15(7): 3196-209, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15090613

RESUMO

SOI3 was identified by a mutation, soi3-1, that suppressed a mutant trans-Golgi network (TGN) localization signal in the Kex2p cytosolic tail. SOI3, identical to RAV1, encodes a protein important for regulated assembly of vacuolar ATPase. Here, we show that Soi3/Rav1p is required for transport between the early endosome and the late endosome/prevacuolar compartment (PVC). By electron microscopy, soi3-1 mutants massively accumulated structures that resembled early endosomes. soi3Delta mutants exhibited a kinetic delay in transfer of the endocytic tracer dye FM4-64, from the 14 degrees C endocytic intermediate to the vacuole. The soi3Delta mutation delayed vacuolar degradation but not internalization of the a-factor receptor Ste3p. By density gradient fractionation, Soi3/Rav1p associated as a peripheral protein with membranes of a density characteristic of early endosomes. The soi3 null mutation markedly reduced the rate of Kex2p transport from the TGN to the PVC but had no effect on vacuolar protein sorting or cycling of Vps10p. These results suggest that assembly of vacuolar ATPase at the early endosome is required for transport of both Ste3p and Kex2p from the early endosome to the PVC and support a model in which cycling through the early endosome is part of the normal itinerary of Kex2p and other TGN-resident proteins.


Assuntos
Vesículas Citoplasmáticas/fisiologia , Endocitose/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Rede trans-Golgi/fisiologia , Proteínas de Transporte de Cátions/análise , Proteínas de Transporte de Cátions/metabolismo , Endocitose/genética , Endossomos/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Mutação/genética , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Fator de Acasalamento , Receptores de Feromônios/análise , Receptores de Feromônios/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/imunologia , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência/genética , Vacúolos/imunologia , Vacúolos/fisiologia , Vacúolos/ultraestrutura , Proteínas de Transporte Vesicular/análise , Proteínas de Transporte Vesicular/fisiologia
16.
Open Biol ; 7(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28878042

RESUMO

During Bacillus subtilis replication two replicative polymerases function at the replisome to collectively carry out genome replication. In a reconstituted in vitro replication assay, PolC is the main polymerase while the lagging strand DnaE polymerase briefly extends RNA primers synthesized by the primase DnaG prior to handing-off DNA synthesis to PolC. Here, we show in vivo that (i) the polymerase activity of DnaE is essential for both the initiation and elongation stages of DNA replication, (ii) its error rate varies inversely with PolC concentration, and (iii) its misincorporations are corrected by the mismatch repair system post-replication. We also found that the error rates in cells encoding mutator forms of both PolC and DnaE are significantly higher (up to 15-fold) than in PolC mutants. In vitro, we showed that (i) the polymerase activity of DnaE is considerably stimulated by DnaN, SSB and PolC, (ii) its error-prone activity is strongly inhibited by DnaN, and (iii) its errors are proofread by the 3' > 5' exonuclease activity of PolC in a stable template-DnaE-PolC complex. Collectively our data show that protein-protein interactions within the replisome modulate the activity and fidelity of DnaE, and confirm the prominent role of DnaE during B. subtilis replication.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Reparo de Erro de Pareamento de DNA , DNA Polimerase III/genética , DNA Bacteriano/genética , DNA Polimerase Dirigida por DNA/genética , Regulação Bacteriana da Expressão Gênica , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , DNA Polimerase III/metabolismo , DNA Primase/genética , DNA Primase/metabolismo , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Taxa de Mutação , Ligação Proteica
17.
Int Rev Cytol ; 242: 55-120, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15598467

RESUMO

A careful scrutiny of the dynamics of secretory compartments in the entire eukaryotic world reveals many common themes. The most fundamental theme is that the Golgi apparatus and related structures appear as compartments formed by the act of transporting cargo. The second common theme is the pivotal importance for endomembrane dynamics of shifting back and forth the equilibrium between full and perforated cisternae along the pathway. The third theme is the role of a continuous membrane flow in anterograde transfer of molecules from the endoplasmic reticulum through the Golgi apparatus. The last common theme is the self-regulatory balance between anatomical continuities and discontinuities of the endomembrane system. As this balance depends on secretory activity, it provides a source of morphological variability among cell types or, for a given cell type, according to environmental conditions. Beyond this first source of variability, it appears that divergent strategies pave the evolutionary routes in different eukaryotic kingdoms. These divergent strategies primarily affect the levels of stacking, of stabilization, and of clustering of the Golgi apparatus. They presumably underscore a trade-off between versatility and stability to adapt the secretory function to the degree of environmental variability. Nonequilibrium secretory structures would provide yeasts, and plants to a lesser extent, with the required versatility to cope with ever changing environments, by contrast to the stabler milieu intérieur of homeothermic animals.


Assuntos
Retículo Endoplasmático/metabolismo , Células Eucarióticas/metabolismo , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Animais , Transporte Biológico/fisiologia , Compartimento Celular/fisiologia , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/ultraestrutura , Humanos , Membranas Intracelulares/ultraestrutura , Microscopia Eletrônica , Plantas , Leveduras
18.
C R Biol ; 329(12): 945-52, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17126798

RESUMO

A major challenge for bioinformatics and theoretical biology is to build and analyse a unified model of biological knowledge resulting from high-throughput experiment data. Former work analyzed heterogeneous data (protein-protein interactions, genetic regulation, metabolism, synexpression) by modelling them by graphs. These models are unable to represent the qualitative dynamics of the reactions or to model the n-ary interactions. Here, MIB, the Model of Interactions in Biology, a bipartite model of biological networks, is introduced, and its use for topological analysis of the heterogeneous network is presented. Heterogeneous loops and links between synexpression pattern and underlying molecular mechanisms are proposed.


Assuntos
Biologia/tendências , Modelos Biológicos , Saccharomyces cerevisiae/fisiologia , Retroalimentação , Modelos Teóricos
19.
Sci Rep ; 6: 27978, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27302835

RESUMO

Pathogenicity islands are sets of successive genes in a genome that determine the virulence of a bacterium. In a growing number of studies, bacterial virulence appears to be determined by multiple islands scattered along the genome. This is the case in a family of seven plant pathogens and a human pathogen that, under KdgR regulation, massively secrete enzymes such as pectinases that degrade plant cell wall. Here we show that their multiple pathogenicity islands form together a coherently organized, single "archipelago" at the genome scale. Furthermore, in half of the species, most genes encoding secreted pectinases are expressed from the same DNA strand (transcriptional co-orientation). This genome architecture favors DNA conformations that are conducive to genes spatial co-localization, sometimes complemented by co-orientation. As proteins tend to be synthetized close to their encoding genes in bacteria, we propose that this architecture would favor the efficient funneling of pectinases at convergent points within the cell. The underlying functional hypothesis is that this convergent funneling of the full blend of pectinases constitutes a crucial strategy for successful degradation of the plant cell wall. Altogether, our work provides a new approach to describe and predict, at the genome scale, the full virulence complement.


Assuntos
Bactérias/genética , Bactérias/patogenicidade , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Ilhas Genômicas , Poligalacturonase/genética , Fatores de Virulência/genética , Doenças das Plantas/microbiologia , Plantas
20.
Nat Commun ; 7: 11491, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27173435

RESUMO

Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine.


Assuntos
Cílios/metabolismo , Ciliopatias/genética , Nanismo/genética , Hipotonia Muscular/genética , Mapas de Interação de Proteínas , Proteínas/metabolismo , Coluna Vertebral/anormalidades , Transporte Biológico/fisiologia , Cromatografia de Afinidade/métodos , Ciliopatias/patologia , Ciliopatias/terapia , Análise Mutacional de DNA , Conjuntos de Dados como Assunto , Nanismo/patologia , Nanismo/terapia , Fibroblastos , Células HEK293 , Humanos , Espectrometria de Massas , Terapia de Alvo Molecular/métodos , Hipotonia Muscular/patologia , Hipotonia Muscular/terapia , Mapeamento de Interação de Proteínas/métodos , Proteínas/genética , Proteínas/isolamento & purificação , Proteômica/métodos , Coluna Vertebral/patologia , Análise de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA