Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 38(28): 8643-8650, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35793163

RESUMO

Understanding the adsorption of organic molecules on surfaces is of essential importance for many applications. Adsorption energies are typically measured using temperature-programmed desorption. However, for large organic molecules, often only desorption of the multilayers is possible, while the bottom monolayer in direct contact to the surface cannot be desorbed without decomposition. Nevertheless, the adsorption energies of these directly adsorbed molecules are the ones of the most interest. We use a layer-exchange process investigated with X-ray photoelectron spectroscopy to compare the relative adsorption energies of several metalated tetraphenylporphyrins on rutile TiO2(110) 1 × 1. We deposit a mixture of two different molecules, one on top of the other, and slowly anneal above their multilayer desorption temperature. During the slow heating, the molecules begin to diffuse between the layers and the molecules with the stronger interaction with the surface displace the weaker-interacting molecules from the surface and push them into the multilayer. The multilayers eventually desorb, leaving behind a monolayer of strongly interacting molecules. From the ratio of the two different porphyrin molecules in the residual monolayer and the desorbed multilayer, we can calculate the equilibrium constant of the layer-exchange process and thereby the difference in adsorption energy between the two different porphyrin molecules.

2.
Molecules ; 26(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066129

RESUMO

Porphyrins are large organic molecules that are interesting for different applications, such as photovoltaic cells, gas sensors, or in catalysis. For many of these applications, the interactions between adsorbed molecules and surfaces play a crucial role. Studies of porphyrins on surfaces typically fall into one of two groups: (1) evaporation onto well-defined single-crystal surfaces under well-controlled ultrahigh vacuum conditions or (2) more application-oriented wet chemical deposition onto less well-defined high surface area surfaces under ambient conditions. In this study, we will investigate the wet chemical deposition of 5-(monocarboxyphenyl)-10,15,20-triphenylporphyrin (MCTPP) on well-defined rutile TiO2(110) single crystals under ambient conditions. Prior to deposition, the TiO2(110) crystals were also cleaned wet-chemically under ambient conditions, meaning none of the preparation steps were done in ultrahigh vacuum. However, after each preparation step, the surfaces were characterized in ultrahigh vacuum with X-ray photoelectron spectroscopy (XPS) and the result was compared with porphyrin layers prepared in ultrahigh vacuum (UHV) by evaporation. The differences of both preparations when exposed to zinc ion solutions will also be discussed.

3.
Chemphyschem ; 21(20): 2293-2300, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32820833

RESUMO

Thin-film growth of molecular systems is of interest for many applications, such as for instance organic electronics. In this study, we demonstrate how X-ray photoelectron spectroscopy (XPS) can be used to study the growth behavior of such molecular systems. In XPS, coverages are often calculated assuming a uniform thickness across a surface. This results in an error for rough films, and the magnitude of this error depends on the kinetic energy of the photoelectrons analyzed. We have used this kinetic-energy dependency to estimate the roughnesses of thin porphyrin films grown on rutile TiO2 (110). We used two different molecules: cobalt (II) monocarboxyphenyl-10,15,20-triphenylporphyrin (CoMCTPP), with carboxylic-acid anchor groups, and cobalt (II) tetraphenylporphyrin (CoTPP), without anchor groups. We find CoMCTPP to grow as rough films at room temperature across the studied coverage range, whereas for CoTPP the first two layers remain smooth and even; depositing additional CoTPP results in rough films. Although, XPS is not a common technique for measuring roughness, it is fast and provides information of both roughness and thickness in one measurement.

4.
Angew Chem Int Ed Engl ; 57(32): 10074-10079, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29714820

RESUMO

The reaction rate of the self-metalation of free-base tetraphenylporphyrins (TPPs) on Cu(111) increases with the number of cyano groups (n=0, 1, 2, 4) attached at the para positions of the phenyl rings. The findings are based on isothermal scanning tunneling microscopy (STM) measurements. At room temperature, all investigated free-base TPP derivatives adsorb as individual molecules and are aligned with respect to densely packed Cu substrate rows. Annealing at 400 K leads to the formation of linear dimers and/or multimers via CN-Cu-CN bonds, accompanied by self-metalation of the free-base porphyrins following a first-order rate equation. When comparing the non-cyano-functionalized and the tetracyano-functionalized molecules, we find a decrease of the reaction rate by a factor of more than 20, corresponding to an increase of the activation energy from 1.48 to 1.59 eV. Density functional theory (DFT) calculations give insights into the influence of the peripheral electron-withdrawing cyano groups and explain the experimentally observed effects.

5.
Chem Commun (Camb) ; 53(58): 8207-8210, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28681876

RESUMO

Based on density functional theory calculations combined with experimental results, we report and discuss an extremely distorted, "inverted" adsorption geometry of free-base tetraphenylporphyrin on Cu(111). The current findings yield new insights into a well-studied system, shedding light on the peculiar molecule-substrate interaction and the resulting intramolecular conformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA