Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Plant J ; 118(5): 1516-1527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412295

RESUMO

Bacterial wilt, caused by Xanthomonas translucens pv. graminis (Xtg), is a serious disease of economically important forage grasses, including Italian ryegrass (Lolium multiflorum Lam.). A major QTL for resistance to Xtg was previously identified, but the precise location as well as the genetic factors underlying the resistance are yet to be determined. To this end, we applied a bulked segregant analysis (BSA) approach, using whole-genome deep sequencing of pools of the most resistant and most susceptible individuals of a large (n = 7484) biparental F2 population segregating for resistance to Xtg. Using chromosome-level genome assemblies as references, we were able to define a ~300 kb region highly associated with resistance on pseudo-chromosome 4. Further investigation of this region revealed multiple genes with a known role in disease resistance, including genes encoding for Pik2-like disease resistance proteins, cysteine-rich kinases, and RGA4- and RGA5-like disease resistance proteins. Investigation of allele frequencies in the pools and comparative genome analysis in the grandparents of the F2 population revealed that some of these genes contain variants with allele frequencies that correspond to the expected heterozygosity in the resistant grandparent. This study emphasizes the efficacy of combining BSA studies in very large populations with whole genome deep sequencing and high-quality genome assemblies to pinpoint regions associated with a binary trait of interest and accurately define a small set of candidate genes. Furthermore, markers identified in this region hold significant potential for marker-assisted breeding strategies to breed resistance to Xtg in Italian ryegrass cultivars more efficiently.


Assuntos
Resistência à Doença , Lolium , Doenças das Plantas , Xanthomonas , Lolium/genética , Lolium/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Xanthomonas/fisiologia , Locos de Características Quantitativas/genética , Genes de Plantas/genética , Mapeamento Cromossômico
2.
Mol Plant Microbe Interact ; 37(3): 347-353, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38114082

RESUMO

Xanthomonads, including Xanthomonas and Xylella species, constitute a large and significant group of economically and ecologically important plant pathogens. Up-to-date knowledge of these pathogens and their hosts is essential for the development of suitable control measures. Traditional review articles or book chapters have inherent limitations, including static content and rapid obsolescence. To address these challenges, we have developed a Web-based knowledge platform dedicated to xanthomonads, inspired by the concept of living systematic reviews. This platform offers a dynamic resource that encompasses bacterial virulence factors, plant resistance genes, and tools for diagnostics and genetic diversity studies. Our goal is to facilitate access for newcomers to the field, provide continuing education opportunities for students, assist plant protection services with diagnostics, provide valuable information to breeders on sources of resistance and breeding targets, and offer comprehensive expert knowledge to other stakeholders interested in plant-pathogenic xanthomonads. This resource is available for queries and updates at https://euroxanth.ipn.pt. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Melhoramento Vegetal , Xanthomonas , Humanos , Virulência/genética , Xanthomonas/genética , Fatores de Virulência/genética , Plantas/microbiologia , Doenças das Plantas/microbiologia
3.
BMC Genomics ; 24(1): 741, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053038

RESUMO

BACKGROUND: Xanthomonas translucens pv. graminis (Xtg) is a major bacterial pathogen of economically important forage grasses, causing severe yield losses. So far, genomic resources for this pathovar consisted mostly of draft genome sequences, and only one complete genome sequence was available, preventing comprehensive comparative genomic analyses. Such comparative analyses are essential in understanding the mechanisms involved in the virulence of pathogens and to identify virulence factors involved in pathogenicity. RESULTS: In this study, we produced high-quality, complete genome sequences of four strains of Xtg, complementing the recently obtained complete genome sequence of the Xtg pathotype strain. These genomic resources allowed for a comprehensive comparative analysis, which revealed a high genomic plasticity with many chromosomal rearrangements, although the strains were highly related. A high number of transposases were exclusively found in Xtg and corresponded to 413 to 457 insertion/excision transposable elements per strain. These mobile genetic elements are likely to be involved in the observed genomic plasticity and may play an important role in the adaptation of Xtg. The pathovar was found to lack a type IV secretion system, and it possessed the smallest set of type III effectors in the species. However, three XopE and XopX family effectors were found, while in the other pathovars of the species two or less were present. Additional genes that were specific to the pathovar were identified, including a unique set of minor pilins of the type IV pilus, 17 TonB-dependent receptors (TBDRs), and 11 plant cell wall degradative enzymes. CONCLUSION: These results suggest a high adaptability of Xtg, conferred by the abundance of mobile genetic elements, which could play a crucial role in pathogen adaptation. The large amount of such elements in Xtg compared to other pathovars of the species could, at least partially, explain its high virulence and broad host range. Conserved features that were specific to Xtg were identified, and further investigation will help to determine genes that are essential to pathogenicity and host adaptation of Xtg.


Assuntos
Genoma Bacteriano , Xanthomonas , Genômica/métodos , Xanthomonas/genética , Poaceae/genética , Doenças das Plantas/microbiologia , Filogenia
4.
Theor Appl Genet ; 135(12): 4337-4349, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36153770

RESUMO

KEY MESSAGE: High variability for and candidate loci associated with resistance to southern anthracnose and clover rot in a worldwide collection of red clover provide a first basis for genomics-assisted breeding. Red clover (Trifolium pratense L.) is an important forage legume of temperate regions, particularly valued for its high yield potential and its high forage quality. Despite substantial breeding progress during the last decades, continuous improvement of cultivars is crucial to ensure yield stability in view of newly emerging diseases or changing climatic conditions. The high amount of genetic diversity present in red clover ecotypes, landraces, and cultivars provides an invaluable, but often unexploited resource for the improvement of key traits such as yield, quality, and resistance to biotic and abiotic stresses. A collection of 397 red clover accessions was genotyped using a pooled genotyping-by-sequencing approach with 200 plants per accession. Resistance to the two most pertinent diseases in red clover production, southern anthracnose caused by Colletotrichum trifolii, and clover rot caused by Sclerotinia trifoliorum, was assessed using spray inoculation. The mean survival rate for southern anthracnose was 22.9% and the mean resistance index for clover rot was 34.0%. Genome-wide association analysis revealed several loci significantly associated with resistance to southern anthracnose and clover rot. Most of these loci are in coding regions. One quantitative trait locus (QTL) on chromosome 1 explained 16.8% of the variation in resistance to southern anthracnose. For clover rot resistance we found eight QTL, explaining together 80.2% of the total phenotypic variation. The SNPs associated with these QTL provide a promising resource for marker-assisted selection in existing breeding programs, facilitating the development of novel cultivars with increased resistance against two devastating fungal diseases of red clover.


Assuntos
Locos de Características Quantitativas , Trifolium , Trifolium/genética , Medicago/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Variação Biológica da População , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
5.
Phytopathology ; 111(4): 611-616, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32997607

RESUMO

Xanthomonas theicola is the causal agent of bacterial canker on tea plants. There is no complete genome sequence available for X. theicola, a close relative of the species X. translucens and X. hyacinthi, thus limiting basic research for this group of pathogens. Here, we release a high-quality complete genome sequence for the X. theicola type strain, CFBP 4691T. Single-molecule real-time sequencing with a mean coverage of 264× revealed two contigs of 4,744,641 bp (chromosome) and 40,955 bp (plasmid) in size. Genome mining revealed the presence of nonribosomal peptide synthases, two CRISPR systems, the Xps type 2 secretion system, and the Hrp type 3 secretion system. Surprisingly, this strain encodes an additional type 2 secretion system and a novel type 3 secretion system with enigmatic function, hitherto undescribed for xanthomonads. Four type 3 effector genes were found on complete or partial transposons, suggesting a role of transposons in effector gene evolution and spread. This genome sequence fills an important gap to better understand the biology and evolution of the early-branching xanthomonads, also known as clade-1 xanthomonads.


Assuntos
Genoma Bacteriano , Xanthomonas , Genoma Bacteriano/genética , Filogenia , Doenças das Plantas , Chá , Xanthomonas/genética
6.
Theor Appl Genet ; 132(4): 947-958, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30506318

RESUMO

KEY MESSAGE: SNPs and candidate genes associated with bacterial wilt resistance in Italian ryegrass were identified by sequencing the parental plants and pooled F1 progeny of a segregating population. Italian ryegrass (Lolium multiflorum Lam.) is one of the most important forage grass species in temperate regions. Its yield, quality and persistency can significantly be reduced by bacterial wilt, a serious disease caused by Xanthomonas translucens pv. graminis. Although a major QTL for bacterial wilt resistance has previously been reported, detailed knowledge on underlying genes and DNA markers to allow for efficient resistance breeding strategies is currently not available. We used pooled DNA sequencing to characterize a major QTL for bacterial wilt resistance of Italian ryegrass and to develop inexpensive sequence-based markers to efficiently target resistance alleles for marker-assisted recurrent selection. From the mapping population segregating for the QTL, DNA of 44 of the most resistant and 44 of the most susceptible F1 individuals was pooled and sequenced using the Illumina HiSeq 2000 platform. Allele frequencies of 18 × 106 single nucleotide polymorphisms (SNP) were determined in the resistant and susceptible pool. A total of 271 SNPs on 140 scaffold sequences of the reference parental genome showed significantly different allele frequencies in both pools. We converted 44 selected SNPs to KASP™ markers, genetically mapped these proximal to the major QTL and thus validated their association with bacterial wilt resistance. This study highlights the power of pooled DNA sequencing to efficiently target binary traits in biparental mapping populations. It delivers genome sequence data, SNP markers and potential candidate genes which will allow to implement marker-assisted strategies to fix bacterial wilt resistance in outcrossing breeding populations of Italian ryegrass.


Assuntos
Lolium/genética , Lolium/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Análise de Sequência de DNA/métodos , Xanthomonas/fisiologia , Mapeamento Cromossômico , Segregação de Cromossomos , Cruzamentos Genéticos , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Reprodutibilidade dos Testes
7.
BMC Genomics ; 18(1): 35, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056815

RESUMO

BACKGROUND: Xanthomonas translucens pathovars differ in their individual host ranges among Poaceae. As the causal agent of bacterial wilt in Italian ryegrass (Lolium multiflorum Lam.), X. translucens pv. graminis (Xtg) is one of the most important bacterial pathogens in temperate grassland regions. The genomes of six Xtg strains from Switzerland, Norway, and New Zealand were sequenced in order to gain insight into conserved genomic traits from organisms covering a wide geographical range. Subsequent comparative analysis with previously published genome data of seven non-graminis X. translucens strains including the pathovars arrhenatheri, poae, phlei, cerealis, undulosa, and translucens was conducted to identify candidate genes linked to the host adaptation of Xtg to Italian ryegrass. RESULTS: Phylogenetic analysis revealed a tight clustering of Xtg strains, which were found to share a large core genome. Conserved genomic traits included a non-canonical type III secretion system (T3SS) and a type IV pilus (T4P), which both revealed distinct primary structures of the pilins when compared to the non-graminis X. translucens strains. Xtg-specific traits that had no homologues in the other X. translucens strains were further found to comprise several hypothetical proteins, a TonB-dependent receptor, transporters, and effector proteins as well as toxin-antitoxin systems and DNA methyltransferases. While a nearly complete flagellar gene cluster was identified in one of the sequenced Xtg strains, phenotypic analysis pointed to swimming-deficiency as a common trait of the pathovar graminis. CONCLUSION: Our study suggests that host adaptation of X. translucens pv. graminis may be conferred by a combination of pathovar-specific effector proteins, regulatory mechanisms, and adapted nutrient acquisition. Sequence deviations of pathogen-associated molecular patterns (PAMPs), as observed for the pilins of the T4P and T3SS, are moreover likely to impede perception by the plant defense machinery and thus facilitate successful host colonization of Italian ryegrass.


Assuntos
Genoma Bacteriano , Genômica , Interações Hospedeiro-Patógeno , Característica Quantitativa Herdável , Xanthomonas/genética , Tamanho do Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Família Multigênica , Filogenia , Doenças das Plantas/microbiologia , Poaceae/microbiologia , Sistemas de Secreção Tipo VI/genética , Virulência/genética , Xanthomonas/patogenicidade
8.
BMC Genet ; 17(1): 124, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27576309

RESUMO

BACKGROUND: Sainfoin is a perennial forage legume with beneficial properties for animal husbandry due to the presence of secondary metabolites. However, worldwide cultivation of sainfoin is marginal due to the lack of varieties with good agronomic performance, adapted to a broad range of environmental conditions. Little is known about the genetics of sainfoin and only few genetic markers are available to assist breeding and genetic investigations. The objective of this study was to develop a set of SSR markers useful for genetic studies in sainfoin and their characterization in diverse germplasm. RESULTS: A set of 400 SSR primer combinations were tested for amplification and their ability to detect polymorphisms in a set of 32 sainfoin individuals, representing distinct varieties or landraces. Alleles were scored for presence or absence and polymorphism information content of each SSR locus was calculated with an adapted formula taking into account the tetraploid character of sainfoin. Relationships among individuals were visualized using cluster and principle components analysis. Of the 400 primer combinations tested, 101 reliably detected polymorphisms among the 32 sainfoin individuals. Among the 1154 alleles amplified 250 private alleles were observed. The number of alleles per locus ranged from 2 to 24 with an average of 11.4 alleles. The average polymorphism information content reached values of 0.14 to 0.36. The clustering of the 32 individuals suggested a separation into two groups depending on the origin of the accessions. CONCLUSIONS: The SSR markers characterized and tested in this study provide a valuable tool to detect polymorphisms in sainfoin for future genetic studies and breeding programs. As a proof of concept, we showed that these markers can be used to separate sainfoin individuals based on their origin.


Assuntos
Fabaceae/fisiologia , Repetições de Microssatélites , Sementes/genética , Fabaceae/genética , Marcadores Genéticos , Melhoramento Vegetal , Análise de Componente Principal , Locos de Características Quantitativas , Análise de Sequência de DNA
9.
BMC Genet ; 16: 117, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446757

RESUMO

BACKGROUND: Sainfoin (Onobrychis viciifolia) is a promising alternative forage plant of good quality, moderate nutrient demand and a high content of polyphenolic compounds. Its poor adoption is caused by the limited availability of well performing varieties. Sainfoin is characterised as tetraploid and mainly outcrossing, but the extent of self-fertilisation and its consequences was not investigated so far. This study aimed at assessing the rate of self-fertilisation in sainfoin under different pollination regimes and at analysing the consequences on plant performance in order to assist future breeding efforts. METHODS: The self-fertilisation rate was assessed in three sainfoin populations with artificially directed pollination (ADP) and in three populations with non-directed pollination (NDP). Dominant SRAP (sequence-related amplified polymorphism) and codominant SSR (simple sequence repeats) markers were used to detect self-fertilisation in sainfoin for the first time based on molecular marker data. RESULTS: High rates of self-fertilisation of up to 64.8% were observed for ADP populations in contrast to only up to 3.9% for NDP populations. Self-fertilisation in ADP populations led to a reduction in plant height, plant vigour and, most severely, for seed yield. CONCLUSIONS: Although sainfoin is predominantly outcrossing, self-fertilisation can occur to a high degree under conditions of limited pollen availability. These results will influence future breeding efforts because precautions have to be taken when crossing breeding material. The resulting inbreeding depression can lead to reduced performance in self-fertilised offspring. Nevertheless the possibility of self-fertilisation also offers new ways for hybrid breeding based on the development of homogenous inbred lines.


Assuntos
Cruzamento , Fabaceae/fisiologia , Autofertilização/fisiologia , Análise de Variância , Fabaceae/genética , Marcadores Genéticos , Repetições de Microssatélites/genética , Fenótipo , Polinização/fisiologia , Polimorfismo Genético , Análise de Componente Principal
10.
GigaByte ; 2024: gigabyte112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496214

RESUMO

This work is an update and extension of the previously published article "Ultralong Oxford Nanopore Reads Enable the Development of a Reference-Grade Perennial Ryegrass Genome Assembly" by Frei et al. The published genome assembly of the doubled haploid perennial ryegrass (Lolium perenne L.) genotype Kyuss (Kyuss v1.0) marked a milestone for forage grass research and breeding. However, order and orientation errors may exist in the pseudo-chromosomes of Kyuss, since barley (Hordeum vulgare L.), which diverged 30 million years ago from perennial ryegrass, was used as the reference to scaffold Kyuss. To correct for structural errors possibly present in the published Kyuss assembly, we de novo assembled the genome again and generated 50-fold coverage high-throughput chromosome conformation capture (Hi-C) data to assist pseudo-chromosome construction. The resulting new chromosome-level assembly Kyuss v2.0 showed improved quality with high contiguity (contig N50 = 120 Mb), high completeness (total BUSCO score = 99%), high base-level accuracy (QV = 50), and correct pseudo-chromosome structure (validated by Hi-C contact map). This new assembly will serve as a better reference genome for Lolium spp. and greatly benefit the forage and turf grass research community.

11.
Front Plant Sci ; 15: 1407609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38916032

RESUMO

Genomic prediction has mostly been used in single environment contexts, largely ignoring genotype x environment interaction, which greatly affects the performance of plants. However, in the last decade, prediction models including marker x environment (MxE) interaction have been developed. We evaluated the potential of genomic prediction in red clover (Trifolium pratense L.) using field trial data from five European locations, obtained in the Horizon 2020 EUCLEG project. Three models were compared: (1) single environment (SingleEnv), (2) across environment (AcrossEnv), (3) marker x environment interaction (MxE). Annual dry matter yield (DMY) gave the highest predictive ability (PA). Joint analyses of DMY from years 1 and 2 from each location varied from 0.87 in Britain and Switzerland in year 1, to 0.40 in Serbia in year 2. Overall, crude protein (CP) was predicted poorly. PAs for date of flowering (DOF), however ranged from 0.87 to 0.67 for Britain and Switzerland, respectively. Across the three traits, the MxE model performed best and the AcrossEnv worst, demonstrating that including marker x environment effects can improve genomic prediction in red clover. Leaving out accessions from specific regions or from specific breeders' material in the cross validation tended to reduce PA, but the magnitude of reduction depended on trait, region and breeders' material, indicating that population structure contributed to the high PAs observed for DMY and DOF. Testing the genomic estimated breeding values on new phenotypic data from Sweden showed that DMY training data from Britain gave high PAs in both years (0.43-0.76), while DMY training data from Switzerland gave high PAs only for year 1 (0.70-0.87). The genomic predictions we report here underline the potential benefits of incorporating MxE interaction in multi-environment trials and could have perspectives for identifying markers with effects that are stable across environments, and markers with environment-specific effects.

12.
BMC Genet ; 14: 102, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24165514

RESUMO

BACKGROUND: Dactylis glomerata (orchardgrass or cocksfoot) is a forage crop of agronomic importance comprising high phenotypic plasticity and variability. Although the genus Dactylis has been studied quite well within the past century, little is known about the genetic diversity and population patterns of natural populations from geographically distinct grassland regions in Europe. The objectives of this study were to test the ploidy level of 59 natural and semi-natural populations of D. glomerata, to investigate genetic diversity, differentiation patterns within and among the three geographic regions, and to evaluate selected populations for their value as genetic resources. RESULTS: Among 1861 plants from 20 Swiss, 20 Bulgarian and 19 Norwegian populations of D. glomerata, exclusively tetraploid individuals were identified based on 29 SSR markers. The average expected heterozygosity (HE,C) ranged from 0.44 to 0.59 and was highest in the Norwegian region. The total number of rare alleles was high, accounting for 59.9% of the amplified alleles. 80.82% of the investigated individuals could be assigned to their respective geographic region based on allele frequencies. Average genetic distances were low despite large geographic distances and ranged from D = 0.09 to 0.29 among populations. CONCLUSIONS: All three case study regions revealed high genetic variability of tetraploid D. glomerata within selected populations and numerous rare and localized alleles which were geographically unique. The large, permanent grassland patches in Bulgaria provided a high genetic diversity, while fragmented, semi-natural grassland in the Norwegian region provided a high amount of rare, localized alleles, which have to be considered in conservation and breeding strategies. Therefore, the selected grassland populations investigated conserve a large pool of genetic resources and provide valuable sources for forage crop breeding programs.


Assuntos
Dactylis/genética , Genes de Plantas , Variação Genética , Alelos , Europa (Continente) , Frequência do Gene , Genética Populacional , Genótipo , Heterozigoto , Repetições de Microssatélites , Análise de Componente Principal , Tetraploidia
13.
Front Plant Sci ; 14: 1189662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235014

RESUMO

Improvement of persistency is an important breeding goal in red clover (Trifolium pratense L.). In areas with cold winters, lack of persistency is often due to poor winter survival, of which low freezing tolerance (FT) is an important component. We conducted a genome wide association study (GWAS) to identify loci associated with freezing tolerance in a collection of 393 red clover accessions, mostly of European origin, and performed analyses of linkage disequilibrium and inbreeding. Accessions were genotyped as pools of individuals using genotyping-by-sequencing (pool-GBS), generating both single nucleotide polymorphism (SNP) and haplotype allele frequency data at accession level. Linkage disequilibrium was determined as a squared partial correlation between the allele frequencies of pairs of SNPs and found to decay at extremely short distances (< 1 kb). The level of inbreeding, inferred from the diagonal elements of a genomic relationship matrix, varied considerably between different groups of accessions, with the strongest inbreeding found among ecotypes from Iberia and Great Britain, and the least found among landraces. Considerable variation in FT was found, with LT50-values (temperature at which 50% of the plants are killed) ranging from -6.0°C to -11.5°C. SNP and haplotype-based GWAS identified eight and six loci significantly associated with FT (of which only one was shared), explaining 30% and 26% of the phenotypic variation, respectively. Ten of the loci were found within or at a short distance (<0.5 kb) from genes possibly involved in mechanisms affecting FT. These include a caffeoyl shikimate esterase, an inositol transporter, and other genes involved in signaling, transport, lignin synthesis and amino acid or carbohydrate metabolism. This study paves the way for a better understanding of the genetic control of FT and for the development of molecular tools for the improvement of this trait in red clover through genomics assisted breeding.

14.
Front Plant Sci ; 14: 1128823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938037

RESUMO

Red clover (Trifolium pratense L.) is an outcrossing forage legume that has adapted to a wide range of climatic and growing conditions across Europe. Red clover is valued for its high yield potential and its forage quality. The high amount of genetic diversity present in red clover provides an invaluable, but often poorly characterized resource to improve key traits such as yield, quality, and resistance to biotic and abiotic stresses. In this study, we examined the genetic and phenotypic diversity within a diverse set of 395 diploid red clover accessions via genome wide allele frequency fingerprinting and multi-location field trials across Europe. We found that the genetic structure of accessions mostly reflected their geographic origin and only few cases were detected, where breeders integrated foreign genetic resources into their local breeding pools. The mean dry matter yield of the first main harvesting season ranged from 0.74 kg m-2 in Serbia and Norway to 1.34 kg m-2 in Switzerland. Phenotypic performance of accessions in the multi-location field trials revealed a very strong accession x location interaction. Local adaptation was especially prominent in Nordic red clover accessions that showed a distinct adaptation to the growing conditions and cutting regime of the North. The traits vigor, dry matter yield and plant density were negatively correlated between the trial location in Norway and the locations Great Britain, Switzerland, Czech Republic and Serbia. Notably, breeding material and cultivars generally performed well at the location where they were developed. Our results confirmed that red clover cultivars were bred from regional ecotypes and show a narrow adaptation to regional conditions. Our study can serve as a valuable basis for identifying interesting materials that express the desired characteristics and contribute to the adaptation of red clover to future climatic conditions.

15.
Ann Bot ; 110(6): 1271-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22362662

RESUMO

BACKGROUND AND AIMS: Advanced phenotyping, i.e. the application of automated, high-throughput methods to characterize plant architecture and performance, has the potential to accelerate breeding progress but is far from being routinely used in current breeding approaches. In forage and turf improvement programmes, in particular, where breeding populations and cultivars are characterized by high genetic diversity and substantial genotype × environment interactions, precise and efficient phenotyping is essential to meet future challenges imposed by climate change, growing demand and declining resources. SCOPE: This review highlights recent achievements in the establishment of phenotyping tools and platforms. Some of these tools have originally been established in remote sensing, some in precision agriculture, while others are laboratory-based imaging procedures. They quantify plant colour, spectral reflection, chlorophyll-fluorescence, temperature and other properties, from which traits such as biomass, architecture, photosynthetic efficiency, stomatal aperture or stress resistance can be derived. Applications of these methods in the context of forage and turf breeding are discussed. CONCLUSIONS: Progress in cutting-edge molecular breeding tools is beginning to be matched by progress in automated non-destructive imaging methods. Joint application of precise phenotyping machinery and molecular tools in optimized breeding schemes will improve forage and turf breeding in the near future and will thereby contribute to amended performance of managed grassland agroecosystems.


Assuntos
Cruzamento/métodos , Magnoliopsida/genética , Poaceae/genética , Agricultura , Biomassa , Embaralhamento de DNA , Ecossistema , Genótipo , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/fisiologia , Fenótipo , Poaceae/crescimento & desenvolvimento , Poaceae/fisiologia , Seleção Genética
16.
Mol Ecol Resour ; 22(5): 1725-1745, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34918474

RESUMO

Grasslands are widespread and economically relevant ecosystems at the basis of sustainable roughage production. Plant genetic diversity (PGD; i.e., within-species diversity) is related to many beneficial effects on the ecosystem functioning of grasslands. The monitoring of PGD in temperate grasslands is complicated by the multiplicity of species present and by a shortage of methods for large-scale assessments. However, the continuous advancement of high-throughput DNA sequencing approaches has improved the prospects of broad, multispecies PGD monitoring. Among them, amplicon sequencing stands out as a robust and cost-effective method. Here, we report a set of 12 multispecies primer pairs that can be used for high-throughput PGD assessments in multiple grassland plant species. The target loci were selected and tested in two phases: a "discovery phase" based on a sequence capture assay (611 nuclear loci assessed in 16 grassland plant species), which resulted in the selection of 11 loci; and a "validation phase", in which the selected loci were targeted and sequenced using multispecies primers in test populations of Dactylis glomerata L., Lolium perenne L., Festuca pratensis Huds., Trifolium pratense L. and T. repens L. The multispecies amplicons had nucleotide diversities per species from 5.19 × 10-3 to 1.29 × 10-2 , which is in the range of flowering-related genes but slightly lower than pathogen resistance genes. We conclude that the methodology, the DNA sequence resources, and the primer pairs reported in this study provide the basis for large-scale, multispecies PGD monitoring in grassland plants.


Assuntos
Festuca , Lolium , Ecossistema , Variação Genética , Pradaria , Lolium/genética , Plantas/genética
17.
Theor Appl Genet ; 122(3): 567-79, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20976589

RESUMO

Xanthomonas translucens pv. graminis (Xtg) causes bacterial wilt, a severe disease of forage grasses such as Italian ryegrass (Lolium multiflorum Lam.). In order to gain a more detailed understanding of the genetic control of resistance mechanisms and to provide prerequisites for marker assisted selection, the partial transcriptomes of two Italian ryegrass genotypes, one resistant and one susceptible to bacterial wilt were compared at four time points after Xtg infection. A cDNA microarray developed from a perennial ryegrass (Lolium perenne) expressed sequence tag set consisting of 9,990 unique genes was used for transcriptome analysis in Italian ryegrass. An average of 4,487 (45%) of the perennial ryegrass sequences spotted on the cDNA microarray were detected by cross-hybridisation to Italian ryegrass. Transcriptome analyses of the resistant versus the susceptible genotype revealed substantial gene expression differences (>1,200) indicating that great gene expression differences between different Italian ryegrass genotypes exist which potentially contribute to the observed phenotypic divergence in Xtg resistance between the two genotypes. In the resistant genotype, several genes differentially expressed after Xtg inoculation were identified which revealed similarities to transcriptional changes triggered by pathogen-associated molecular patterns in other plant-pathogen interactions. These genes represent candidate genes of particular interest for the development of tools for marker assisted resistance breeding.


Assuntos
Genes de Plantas/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata/genética , Lolium/genética , Lolium/microbiologia , Transcrição Gênica , Xanthomonas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Itália , Lolium/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Estresse Fisiológico/genética , Regulação para Cima/genética
18.
Theor Appl Genet ; 122(6): 1133-47, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21212931

RESUMO

Species belonging to the Festuca-Lolium complex are important forage and turf species and as such, have been studied intensively. However, their out-crossing nature and limited availability of molecular markers make genetic studies difficult. Here, we report on saturation of F. pratensis and L. multiflorum genetic maps using Diversity Array Technology (DArT) markers and the DArTFest array.The 530 and 149 DArT markers were placed on genetic maps of L. multiflorum and F. pratensis, respectively, with overlap of 20 markers, which mapped in both species. The markers were sequenced and comparative sequence analysis was performed between L. multiflorum, rice and Brachypodium. The utility of the DArTFest array was then tested on a Festulolium population FuRs0357 in an integrated analysis using the DArT marker map positions to study associations between markers and freezing tolerance. Ninety six markers were significantly associated with freezing tolerance and five of these markers were genetically mapped to chromosomes 2, 4 and 7. Three genomic loci associated with freezing tolerance in the FuRs0357 population co-localized with chromosome segments and QTLs previously identified to be associated with freezing tolerance. The present work clearly confirms the potential of the DArTFest array in genetic studies of the Festuca-Lolium complex. The annotated DArTFest array resources could accelerate further studies and improvement of desired traits in Festuca-Lolium species.


Assuntos
Adaptação Fisiológica/genética , Mapeamento Cromossômico/métodos , Festuca/genética , Congelamento , Marcadores Genéticos , Lolium/genética , Animais , Sequência de Bases , Brachypodium/genética , Cromossomos de Plantas , Ligação Genética , Humanos , Dados de Sequência Molecular , Oryza/genética , Polimorfismo Genético , Análise de Sequência de DNA , Sintenia
19.
Front Microbiol ; 12: 817815, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35310401

RESUMO

The Xanthomonas translucens species comprises phytopathogenic bacteria that can cause serious damage to cereals and to forage grasses. So far, the genomic resources for X. translucens were limited, which hindered further understanding of the host-pathogen interactions at the molecular level and the development of disease-resistant cultivars. To this end, we complemented the available complete genome sequence of the X. translucens pv. translucens pathotype strain DSM 18974 by sequencing the genomes of all the other 10 X. translucens pathotype strains using PacBio long-read technology and assembled complete genome sequences. Phylogeny based on average nucleotide identity (ANI) revealed three distinct clades within the species, which we propose to classify as clades Xt-I, Xt-II, and Xt-III. In addition to 2,181 core X. translucens genes, a total of 190, 588, and 168 genes were found to be exclusive to each clade, respectively. Moreover, 29 non-transcription activator-like effector (TALE) and 21 TALE type III effector classes were found, and clade- or strain-specific effectors were identified. Further investigation of these genes could help to identify genes that are critically involved in pathogenicity and/or host adaptation, setting the grounds for the development of new resistant cultivars.

20.
BMC Plant Biol ; 10: 177, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20712870

RESUMO

BACKGROUND: Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm. RESULTS: A set of 204 expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM), ranging for individual chromosomes from 70 cM of linkage group (LG) 6 to 171 cM of LG 2. CONCLUSIONS: The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species.


Assuntos
Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Lolium/genética , Repetições de Microssatélites , DNA de Plantas/genética , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Genótipo , Polimorfismo Genético , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA