Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Neurol ; 10: 1046, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649604

RESUMO

Objective: To test the feasibility of conducting a full-scale project evaluating the potential value of the phosphorylated neurofilament H (pNF-H) and several cytokines as disability markers in relapsing-remitting multiple sclerosis (RRMS). Methods: Twenty-four patients with 5-year RRMS evolution and eleven healthy control subjects entered the study. None of the participants had an inflammatory systemic or metabolic disease. Disability progression was evaluated using the Expanded Disability Status Scale. Serum level of pNF-H, the anti-inflammatory cytokine transforming growth factor-ß 1 (TGF-ß1), and the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-17A (IL-17A), monocyte chemotactic protein-1 (MCP-1), and soluble intercellular cell-adhesion molecule 1 (sICAM-1) were quantified using enzyme-linked immunosorbent assay (ELISA). Results: The patients had higher serum level of TGF-ß1, IL-6, sICAM-1, and pNF-H. Based on these findings, a sample of at least 49 controls and 89 recent-onset RRMS patients is required to find an at least 1-point between-group difference in pNF-H with a power of 80% and an α error = 0.05. The progression of the disease was correlated with the level of pNF-H (Spearman rho = 0.624, p = 0.006), but not with the cytokines'. Conclusions: The serum level of pNF-H, EDSS score-correlated, might stand for a potential biomarker of disability in RRMS reflecting progressive axonal damage and cumulative neurological deterioration. The novelty of these results warrants conducting a larger confirmatory trial.

2.
Oxid Med Cell Longev ; 2017: 4162465, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28706574

RESUMO

The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.


Assuntos
Asfixia/complicações , Glutarredoxinas/uso terapêutico , Hipóxia-Isquemia Encefálica/metabolismo , Neurônios/patologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Glutarredoxinas/administração & dosagem , Glutarredoxinas/farmacologia , Hipóxia-Isquemia Encefálica/patologia , Masculino , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA