Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(10): 610, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302532

RESUMO

A nanoemulsion containing CdTe quantum dots (NE-CdTe-QD) was developed to shield cells from cadmium toxicity and shown to be a promising candidate for brain tumor diagnosis. CdTe-QD was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. CdTe-QD exhibited high luminescence emission at 700 nm, and their stability was maintained when encapsulated in lipidic/polymeric nanoemulsions (198 ± 2.0 nm; PDI = 0.174; - 49.0 mV). The biological effects of free and nanoemulsified CdTe-QD were tested in normal cells (NHF) and glioblastoma cell lines (U87-MG and T98G). Membrane colocalization of NE-CdTe-QD by T98G cells was observed. Instead, intracellular endoplasmic reticulum localization of NE-CdTe-QD was verified in U87-MG cells. Cell viability was reduced only when NE-CdTe-QD permeated the membrane of GBM cells, as observed in U87-MG cells, whereas no cytotoxic effects were observed in normal fibroblasts. Incorporating quantum dots directly into the brain cells is difficult. However, the nanoemulsions reduced the toxicity of CdTe-QD in zebrafish larvae and increased their circulation time, and direct injection into the zebrafish brain did not affect neural cell viability. This validates the potential application of these nanomaterials as diagnostic agents and satisfies the necessary criteria for their use as photosensitizers in photodynamic therapy.


Assuntos
Compostos de Cádmio , Sobrevivência Celular , Emulsões , Pontos Quânticos , Telúrio , Peixe-Zebra , Pontos Quânticos/química , Telúrio/química , Animais , Compostos de Cádmio/química , Emulsões/química , Humanos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia
2.
Front Behav Neurosci ; 16: 885775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990722

RESUMO

The genus Danionella comprises some of the smallest known vertebrate species and is evolutionary closely related to the zebrafish, Danio rerio. With its optical translucency, rich behavioral repertoire, and a brain volume of just 0.6 mm3, Danionella cerebrum (Dc) holds great promise for whole-brain in vivo imaging analyses with single cell resolution of higher cognitive functions in an adult vertebrate. Little is currently known, however, about the basic locomotor activity of adult and larval Danionella cerebrum and how it compares to the well-established zebrafish model system. Here, we provide a comparative developmental analysis of the larval locomotor activity of Dc and AB wildtype as well as crystal zebrafish in a light-dark test. We find similarities but also differences in both species, most notably a striking startle response of Dc following a sudden dark to light switch, whereas zebrafish respond most strongly to a sudden light to dark switch. We hypothesize that the different startle responses in both species may stem from their different natural habitats and could represent an opportunity to investigate how neural circuits evolve to evoke different behaviors in response to environmental stimuli.

3.
Viruses ; 14(10)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298643

RESUMO

Virus-like particles (VLPs) resemble authentic virus while not containing any genomic information. Here, we present a fast and powerful method for the production of SARS-CoV-2 VLP in insect cells and the application of these VLPs to evaluate the inhibition capacity of monoclonal antibodies and sera of vaccinated donors. Our method avoids the baculovirus-based approaches commonly used in insect cells by employing direct plasmid transfection to co-express SARS-CoV-2 envelope, membrane, and spike protein that self-assemble into VLPs. After optimization of the expression plasmids and vector ratios, VLPs with an ~145 nm diameter and the typical "Corona" aura were obtained, as confirmed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Fusion of the membrane protein to GFP allowed direct quantification of binding inhibition to angiotensin II-converting enzyme 2 (ACE2) on cells by therapeutic antibody candidates or sera from vaccinated individuals. Neither VLP purification nor fluorescent labeling by secondary antibodies are required to perform these flow cytometric assays.


Assuntos
Baculoviridae , COVID-19 , Humanos , Animais , Baculoviridae/genética , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/genética , Angiotensina II , Insetos , Anticorpos Monoclonais
4.
Commun Biol ; 3(1): 311, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546816

RESUMO

While microfluidics enables chemical stimuli application with high spatio-temporal precision, light-sheet microscopy allows rapid imaging of entire zebrafish brains with cellular resolution. Both techniques, however, have not been combined to monitor whole-brain neural activity yet. Unlike conventional microfluidics, we report here an all-glass device (NeuroExaminer) that is compatible with whole-brain in vivo imaging using light-sheet microscopy and can thus provide insights into brain function in health and disease.


Assuntos
Encéfalo/diagnóstico por imagem , Dispositivos Lab-On-A-Chip , Microscopia/instrumentação , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Sinalização do Cálcio , Desenho Assistido por Computador , Desenho de Equipamento , Vidro , Hidrodinâmica , Larva , Microfluídica/instrumentação , Microscopia/métodos , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA