Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Acta Neuropathol ; 133(5): 767-783, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28341999

RESUMO

Several reports have described the presence of antibodies against Alzheimer's disease-associated hyperphosphorylated forms of tau in serum of healthy individuals. To characterize the specificities that can be found, we interrogated peripheral IgG+ memory B cells from asymptomatic blood donors for reactivity to a panel of phosphorylated tau peptides using a single-cell screening assay. Antibody sequences were recovered, cloned, and expressed as full-length IgGs. In total, 52 somatically mutated tau-binding antibodies were identified, corresponding to 35 unique clonal families. Forty-one of these antibodies recognize epitopes in the proline-rich and C-terminal domains, and binding of 26 of these antibodies is strictly phosphorylation dependent. Thirteen antibodies showed inhibitory activity in a P301S lysate seeded in vitro tau aggregation assay. Two such antibodies, CBTAU-7.1 and CBTAU-22.1, which bind to the proline-rich and C-terminal regions of tau, respectively, were characterized in more detail. CBTAU-7.1 recognizes an epitope that is similar to that of murine anti-PHF antibody AT8, but has different phospho requirements. Both CBTAU-7.1 and CBTAU-22.1 detect pathological tau deposits in post-mortem brain tissue. CBTAU-7.1 reveals a similar IHC distribution pattern as AT8, immunostaining (pre)tangles, threads, and neuritic plaques. CBTAU-22.1 shows selective detection of neurofibrillary changes by IHC. Taken together, these results suggest the presence of an ongoing antigen-driven immune response against tau in healthy individuals. The wide range of specificities to tau suggests that the human immune repertoire may contain antibodies that can serve as biomarkers or be exploited for therapy.


Assuntos
Doença de Alzheimer/imunologia , Epitopos/imunologia , Memória Imunológica/imunologia , Emaranhados Neurofibrilares/imunologia , Proteínas tau/metabolismo , Adolescente , Adulto , Idoso , Sequência de Aminoácidos/fisiologia , Anticorpos Monoclonais/imunologia , Sítios de Ligação , Epitopos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/patologia , Fosforilação , Adulto Jovem
2.
Pharm Res ; 27(10): 2197-204, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20680668

RESUMO

PURPOSE: The aim of this study was to develop a method to characterize intact soluble monoclonal IgG1 antibody (IgG) oligomers by mass spectrometry. METHODS: IgG aggregates (dimers, trimers, tetramers and high-molecular-weight oligomers) were created by subjecting an IgG formulation to several pH jumps. Protein oligomer fractions were isolated by high performance size exclusion chromatography (HP-SEC), dialyzed against ammonium acetate pH 6.0 (a mass spectrometry-compatible volatile buffer), and analyzed by native electrospray ionization time-of-flight mass spectrometry (ESI-TOF MS). RESULTS: Monomeric and aggregated IgG fractions in the stressed IgG formulation were successfully isolated by HP-SEC. ESI-TOF MS analysis enabled us to determine the molecular weight of the monomeric IgG as well as the aggregates, including dimers, trimers and tetramers. HP-SEC separation and sample preparation proved to be necessary for good quality signal in ESI-TOF MS. Both the HP-SEC protocol and the ESI-TOF mass spectrometric technique were shown to leave the IgG oligomers largely intact. CONCLUSIONS: ESI-TOF MS is a useful tool complementary to HP-SEC to identify and characterize small oligomeric protein aggregates.


Assuntos
Anticorpos Monoclonais/análise , Cromatografia em Gel/métodos , Imunoglobulina G/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Anticorpos Monoclonais/química , Estabilidade de Medicamentos , Eletroforese em Gel de Poliacrilamida , Fracionamento por Campo e Fluxo , Humanos , Imunoglobulina G/química , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica
3.
Sci Rep ; 9(1): 4735, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30894620

RESUMO

Epitope characterization is critical for elucidating the mechanism of action of drug candidates. However, traditional high-resolution epitope mapping techniques are not well suited for screening numerous drug candidates recognizing a similar target. Here, we use Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) to explore the conformational impact of diverse drug molecules binding on Hemagglutinin (HA), the major surface antigen of influenza viruses. We optimized a semi-automated HDX-MS workflow to systematically probe distantly related HA subtypes in complex with 4 different drug candidates, ranging from a monoclonal antibody to a small synthetic peptide. This fast, cost-effective HDX-MS epitope mapping approach accurately determined the main antigenic site in all cases. Moreover, our studies reveal distinct changes in the local conformational dynamics of HA associated to the molecular mechanism of neutralization, establishing a marker for broad anti-HA activity. Taken together, these findings highlight the potential for HDX-MS epitope mapping-based screening to identify promising candidates against HA at early stages of drug discovery.


Assuntos
Mapeamento de Epitopos/métodos , Hemaglutininas/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério/métodos , Influenza Humana/tratamento farmacológico , Descoberta de Drogas/métodos , Hemaglutininas/imunologia , Humanos , Preparações Farmacêuticas/metabolismo , Ligação Proteica
4.
Science ; 349(6254): 1301-6, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26303961

RESUMO

The identification of human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem revitalized hopes of developing a universal influenza vaccine. Using a rational design and library approach, we engineered stable HA stem antigens ("mini-HAs") based on an H1 subtype sequence. Our most advanced candidate exhibits structural and bnAb binding properties comparable to those of full-length HA, completely protects mice in lethal heterologous and heterosubtypic challenge models, and reduces fever after sublethal challenge in cynomolgus monkeys. Antibodies elicited by this mini-HA in mice and nonhuman primates bound a wide range of HAs, competed with human bnAbs for HA stem binding, neutralized H5N1 viruses, and mediated antibody-dependent effector activity. These results represent a proof of concept for the design of HA stem mimics that elicit bnAbs against influenza A group 1 viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Humanos , Camundongos , Multimerização Proteica , Estrutura Secundária de Proteína
5.
J Pharm Sci ; 101(7): 2327-39, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22517069

RESUMO

The presence of aggregates in therapeutic protein formulations is of great concern due to quality, safety, and efficacy issues. Nonetheless, the mechanisms and kinetics of protein aggregation are only partly understood. In this study, metastable immunoglobulin G (IgG) aggregates induced by a brief exposure to pH 1 were kept at 4°C and analyzed over time by size-exclusion chromatography (SEC), nanoparticle tracking analysis, light obscuration, dynamic light scattering, fluorescence spectroscopy, and circular dichroism. The results show the formation of polydisperse aggregates (from dimers to 10-µm particles) shortly after the pH-shift stress. These aggregates increased in size and number over time until a pseudo-equilibrium was reached after 5-7 days. The presence of transient, partially unfolded monomers (molten globules) was detected by SEC with online fluorescent dye detection. The molten globules seemed to either refold into the native state or become involved in aggregation pathways. Seeding pH-shift-induced aggregates into unstressed IgG did not accelerate aggregation during incubation for 3 weeks at 55°C. These results reinforce the role of partially unfolded species in the aggregation of therapeutic proteins. We conclude that the formation of pH-shift-induced IgG aggregates is likely driven by downhill polymerization, as a consequence of successive additions of molten globular monomers.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Dobramento de Proteína , Cromatografia em Gel , Dicroísmo Circular , Humanos , Concentração de Íons de Hidrogênio , Cinética , Conformação Proteica , Proteínas Recombinantes/química , Espalhamento de Radiação , Espectrometria de Fluorescência
6.
J Am Soc Mass Spectrom ; 23(9): 1534-43, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22811075

RESUMO

In the gas-phase, ions of protein complexes typically follow an asymmetric dissociation pathway upon collisional activation, whereby an expelled small monomer takes a disproportionately large amount of the charges from the precursor ion. This phenomenon has been rationalized by assuming that upon activation, a single monomer becomes unfolded, thereby attracting charges to its newly exposed basic residues. Here, we report on the atypical gas-phase dissociation of the therapeutically important, heterodimeric calcium/calmodulin-dependent serine/threonine phosphatase calcineurin, using a combination of tandem mass spectrometry, ion mobility mass spectrometry, and computational modeling. Therefore, a hetero-dimeric calcineurin construct (62 kDa), composed of CNa (44 kDa, a truncation mutant missing the calmodulin binding and auto-inhibitory domains), and CNb (18 kDa), was used. Upon collisional activation, this hetero-dimer follows the commonly observed dissociation behavior, whereby the smaller CNb becomes highly charged and is expelled. Surprisingly, in addition, a second atypical dissociation pathway, whereby the charge partitioning over the two entities is more symmetric is observed. The presence of two gas-phase conformational isomers of calcineurin as revealed by ion mobility mass spectrometry (IM-MS) may explain the co-occurrence of these two dissociation pathways. We reveal the direct relationship between the conformation of the calcineurin precursor ion and its concomitant dissociation pathway and provide insights into the mechanisms underlying this co-occurrence of the typical and atypical fragmentation mechanisms.


Assuntos
Calcineurina/química , Calcineurina/metabolismo , Cálcio/química , Cálcio/metabolismo , Simulação por Computador , Humanos , Isomerismo , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas , Desdobramento de Proteína , Espectrometria de Massas em Tandem
7.
J Pharm Sci ; 100(7): 2574-85, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21344414

RESUMO

PEGylation has been suggested to improve the stability of insulin, but evidence for that is scarce. Here, we compared the forced aggregation behavior of insulin and mono-PEGylated insulin. Therefore, recombinant human insulin was conjugated on lysine B29 with 5-kDa PEG. PEG-insulin was purified by size-exclusion chromatography (SEC) and characterized by mass spectrometry (MS). Next, insulin and PEG-insulin were subjected to heating at 75 °C, metal-catalyzed oxidation, and glutaraldehyde cross-linking. The products were characterized physicochemically by complementary analytical methods. Mono-PEGylation of insulin was confirmed by SEC and MS. Under each of the applied stress conditions, insulin and PEG-insulin showed comparable degradation profiles. All the stressed samples showed submicron aggregates in the size range between 50 and 500 nm. Covalent aggregates and conformational changes were found for both oxidized products. Insulin and its PEGylated counterpart also exhibited similar characteristics when exposed to heat stress, that is, slightly changed secondary and tertiary structures, covalent aggregates with partially intact epitopes, and separation of chain A from chain B. Both glutaraldehyde-treated insulin and PEG-insulin contained covalent and noncovalent aggregates with intact epitopes, showed partially perturbed secondary structure, and substantial loss of tertiary structure. From these results, we conclude that PEGylation does not protect insulin against forced aggregation.


Assuntos
Hipoglicemiantes/química , Insulina/análogos & derivados , Sequência de Aminoácidos , Western Blotting , Química Farmacêutica , Cromatografia em Gel , Reagentes de Ligações Cruzadas/química , Eletroforese em Gel de Poliacrilamida , Temperatura Alta , Humanos , Insulina/química , Lisina , Dados de Sequência Molecular , Oxirredução , Polietilenoglicóis/química , Desnaturação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA