Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34960282

RESUMO

The deterioration of road conditions and increasing repair deficits pose challenges for the maintenance of reliable road infrastructure, and thus threaten, for example, safety and the fluent flow of traffic. Improved and more efficient procedures for maintenance are required, and these require improved knowledge of road conditions, i.e., improved data. Three-dimensional mapping presents possibilities for large-scale collection of data on road surfaces and automatic evaluation of maintenance needs. However, the development and, specifically, evaluation of large-scale mobile methods requires reliable references. To evaluate possibilities for close-range, static, high-resolution, three-dimensional measurement of road surfaces for reference use, three measurement methods and five instrumentations are investigated: terrestrial laser scanning (TLS, Leica RTC360), photogrammetry using high-resolution professional-grade cameras (Nikon D800 and D810E), photogrammetry using an industrial camera (FLIR Grasshopper GS3-U3-120S6C-C), and structured-light handheld scanners Artec Leo and Faro Freestyle. High-resolution photogrammetry is established as reference based on laboratory measurements and point density. The instrumentations are compared against one another using cross-sections, point-point distances, and ability to obtain key metrics of defects, and a qualitative assessment of the processing procedures for each is carried out. It is found that photogrammetric models provide the highest resolutions (10-50 million points per m2) and photogrammetric and TLS approaches perform robustly in precision with consistent sub-millimeter offsets relative to one another, while handheld scanners perform relatively inconsistently. A discussion on the practical implications of using each of the examined instrumentations is presented.


Assuntos
Hidrocarbonetos , Fotogrametria , Coleta de Dados , Lasers
2.
Sensors (Basel) ; 21(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567550

RESUMO

This paper studied the applicability of the Roamer-R4DW mobile laser scanning (MLS) system for road rut depth measurement. The MLS system was developed by the Finnish Geospatial Research Institute (FGI), and consists of two mobile laser scanners and a Global Navigation Satellite System (GNSS)-inertial measurement unit (IMU) positioning system. In the study, a fully automatic algorithm was developed to calculate and analyze the rut depths, and verified in 64 reference pavement plots (1.0 m × 3.5 m). We showed that terrestrial laser scanning (TLS) data is an adequate reference for MLS-based rutting studies. The MLS-derived rut depths based on 64 plots resulted in 1.4 mm random error, which can be considered adequate precision for operational rutting depth measurements. Such data, also covering the area outside the pavement, would be ideal for multiple road environment applications since the same data can also be used in applications, from high-definition maps to autonomous car navigation and digitalization of street environments over time and in space.

3.
Sensors (Basel) ; 18(3)2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522467

RESUMO

The use of Personal Mobile Terrestrial System (PMTS) has increased considerably for mobile mapping applications because these systems offer dynamic data acquisition with ground perspective in places where the use of wheeled platforms is unfeasible, such as forests and indoor buildings. PMTS has become more popular with emerging technologies, such as miniaturized navigation sensors and off-the-shelf omnidirectional cameras, which enable low-cost mobile mapping approaches. However, most of these sensors have not been developed for high-accuracy metric purposes and therefore require rigorous methods of data acquisition and data processing to obtain satisfactory results for some mapping applications. To contribute to the development of light, low-cost PMTS and potential applications of these off-the-shelf sensors for forest mapping, this paper presents a low-cost PMTS approach comprising an omnidirectional camera with off-the-shelf navigation systems and its evaluation in a forest environment. Experimental assessments showed that the integrated sensor orientation approach using navigation data as the initial information can increase the trajectory accuracy, especially in covered areas. The point cloud generated with the PMTS data had accuracy consistent with the Ground Sample Distance (GSD) range of omnidirectional images (3.5-7 cm). These results are consistent with those obtained for other PMTS approaches.

4.
Sensors (Basel) ; 18(10)2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257505

RESUMO

The growing interest and the market for indoor Location Based Service (LBS) have been drivers for a huge demand for building data and reconstructing and updating of indoor maps in recent years. The traditional static surveying and mapping methods can't meet the requirements for accuracy, efficiency and productivity in a complicated indoor environment. Utilizing a Simultaneous Localization and Mapping (SLAM)-based mapping system with ranging and/or camera sensors providing point cloud data for the maps is an auspicious alternative to solve such challenges. There are various kinds of implementations with different sensors, for instance LiDAR, depth cameras, event cameras, etc. Due to the different budgets, the hardware investments and the accuracy requirements of indoor maps are diverse. However, limited studies on evaluation of these mapping systems are available to offer a guideline of appropriate hardware selection. In this paper we try to characterize them and provide some extensive references for SLAM or mapping system selection for different applications. Two different indoor scenes (a L shaped corridor and an open style library) were selected to review and compare three different mapping systems, namely: (1) a commercial Matterport system equipped with depth cameras; (2) SLAMMER: a high accuracy small footprint LiDAR with a fusion of hector-slam and graph-slam approaches; and (3) NAVIS: a low-cost large footprint LiDAR with Improved Maximum Likelihood Estimation (IMLE) algorithm developed by the Finnish Geospatial Research Institute (FGI). Firstly, an L shaped corridor (2nd floor of FGI) with approximately 80 m length was selected as the testing field for Matterport testing. Due to the lack of quantitative evaluation of Matterport indoor mapping performance, we attempted to characterize the pros and cons of the system by carrying out six field tests with different settings. The results showed that the mapping trajectory would influence the final mapping results and therefore, there was optimal Matterport configuration for better indoor mapping results. Secondly, a medium-size indoor environment (the FGI open library) was selected for evaluation of the mapping accuracy of these three indoor mapping technologies: SLAMMER, NAVIS and Matterport. Indoor referenced maps were collected with a small footprint Terrestrial Laser Scanner (TLS) and using spherical registration targets. The 2D indoor maps generated by these three mapping technologies were assessed by comparing them with the reference 2D map for accuracy evaluation; two feature selection methods were also utilized for the evaluation: interactive selection and minimum bounding rectangles (MBRs) selection. The mapping RMS errors of SLAMMER, NAVIS and Matterport were 2.0 cm, 3.9 cm and 4.4 cm, respectively, for the interactively selected features, and the corresponding values using MBR features were 1.7 cm, 3.2 cm and 4.7 cm. The corresponding detection rates for the feature points were 100%, 98.9%, 92.3% for the interactive selected features and 100%, 97.3% and 94.7% for the automated processing. The results indicated that the accuracy of all the evaluated systems could generate indoor map at centimeter-level, but also variation of the density and quality of collected point clouds determined the applicability of a system into a specific LBS.

5.
Sensors (Basel) ; 15(3): 5311-30, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25746096

RESUMO

Indoor positioning technology has become more and more important in the last two decades. Utilizing Received Signal Strength Indicator (RSSI) fingerprints of Signals of OPportunity (SOP) is a promising alternative navigation solution. However, as the RSSIs vary during operation due to their physical nature and are easily affected by the environmental change, one challenge of the indoor fingerprinting method is maintaining the RSSI fingerprint database in a timely and effective manner. In this paper, a solution for rapidly updating the fingerprint database is presented, based on a self-developed Unmanned Ground Vehicles (UGV) platform NAVIS. Several SOP sensors were installed on NAVIS for collecting indoor fingerprint information, including a digital compass collecting magnetic field intensity, a light sensor collecting light intensity, and a smartphone which collects the access point number and RSSIs of the pre-installed WiFi network. The NAVIS platform generates a map of the indoor environment and collects the SOPs during processing of the mapping, and then the SOP fingerprint database is interpolated and updated in real time. Field tests were carried out to evaluate the effectiveness and efficiency of the proposed method. The results showed that the fingerprint databases can be quickly created and updated with a higher sampling frequency (5Hz) and denser reference points compared with traditional methods, and the indoor map can be generated without prior information. Moreover, environmental changes could also be detected quickly for fingerprint indoor positioning.

6.
Sensors (Basel) ; 14(1): 1228-48, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24434879

RESUMO

A professional-quality, personal laser scanning (PLS) system for collecting tree attributes was demonstrated in this paper. The applied system, which is wearable by human operators, consists of a multi-constellation navigation system and an ultra-high-speed phase-shift laser scanner mounted on a rigid baseplate and consisting of a single sensor block. A multipass-corridor-mapping method was developed to process PLS data and a 2,000 m2 forest plot was utilized in the test. The tree stem detection accuracy was 82.6%; the root mean square error (RMSE) of the estimates of tree diameter at breast height (DBH) was 5.06 cm; the RMSE of the estimates of tree location was 0.38 m. The relative RMSE of the DBH estimates was 14.63%. The results showed, for the first time, the potential of the PLS system in mapping large forest plots. Further research on mapping accuracy in various forest conditions, data correction methods and multi-sensoral positioning techniques is needed. The utilization of this system in different applications, such as harvester operations, should also be explored. In addition to collecting tree-level and plot-level data for forest inventory, other possible applications of PLS for forest ecosystem services include mapping of canopy gaps, measuring leaf area index of large areas, documenting and visualizing forest routes feasible for recreation, hiking and berry and mushroom picking.

7.
Sensors (Basel) ; 13(9): 12497-515, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24048340

RESUMO

Mobile mapping systems (MMSs) are used for mapping topographic and urban features which are difficult and time consuming to measure with other instruments. The benefits of MMSs include efficient data collection and versatile usability. This paper investigates the data processing steps and quality of a boat-based mobile mapping system (BoMMS) data for generating terrain and vegetation points in a river environment. Our aim in data processing was to filter noise points, detect shorelines as well as points below water surface and conduct ground point classification. Previous studies of BoMMS have investigated elevation accuracies and usability in detection of fluvial erosion and deposition areas. The new findings concerning BoMMS data are that the improved data processing approach allows for identification of multipath reflections and shoreline delineation. We demonstrate the possibility to measure bathymetry data in shallow (0-1 m) and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS ground points classification compared to manually classified data. We also demonstrate the spatial variations of the ground point density and assess elevation and vertical accuracies of the BoMMS data.


Assuntos
Monitoramento Ambiental/instrumentação , Sistemas de Informação Geográfica/instrumentação , Imageamento Tridimensional/instrumentação , Lasers , Radar/instrumentação , Navios/instrumentação , Transdutores , Algoritmos , Desenho de Equipamento , Análise de Falha de Equipamento , Armazenamento e Recuperação da Informação/métodos
8.
Sensors (Basel) ; 12(9): 12798-813, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23112743

RESUMO

This study explores the feasibility of applying single-scan airborne, static terrestrial and mobile laser scanning for improving the accuracy of tree height growth measurement. Specifically, compared to the traditional works on forest growth inventory with airborne laser scanning, two issues are regarded: "Can the new technique characterize the height growth for each individual tree?" and "Can this technique refine the minimum growth-discernable temporal interval further?" To solve these two puzzles, the sampling principles of the three laser scanning modes were first examined, and their error sources against the task of tree-top capturing were also analyzed. Next, the three-year growths of 58 Nordic maple trees (Crimson King) for test were intermittently surveyed with one type of laser scanning each time and then analyzed by statistics. The evaluations show that the height growth of each individual tree still cannot be reliably characterized even by single-scan terrestrial laser scanning, and statistical analysis is necessary in this scenario. After Gaussian regression, it is found that the minimum temporal interval with distinguishable tree height growths can be refined into one month based on terrestrial laser scanning, far better than the two years deduced in the previous works based on airborne laser scanning. The associated mean growth was detected to be about 0.12 m. Moreover, the parameter of tree height generally under-estimated by airborne and even mobile laser scanning can be relatively revised by means of introducing static terrestrial laser scanning data. Overall, the effectiveness of the proposed technique is primarily validated.


Assuntos
Lasers , Árvores/crescimento & desenvolvimento
9.
PLoS One ; 14(12): e0225936, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31805122

RESUMO

This study aimed at illustrating how direct measurements, mobile laser scanning and hydraulic modelling can be combined to quantify environmental drivers, improve vegetation models and increase our understanding of vegetation patterns in a sub-arctic river valley. Our results indicate that the resultant vegetation models successfully predict riparian vegetation patterns (Rho = 0.8 for total species richness, AUC = 0.97 for distribution) and highlight differences between eight functional species groups (Rho 0.46-0.84; AUC 0.79-0.93; functional group-specific effects). In our study setting, replacing the laser scanning-based and hydraulic modelling-based variables with a proxy variable elevation did not significantly weaken the models. However, using directly measured and modelled variables allows relating species patterns to e.g. stream power or the length of the flood-free period. Substituting these biologically relevant variables with proxies mask important processes and may reduce the transferability of the results into other sites. At the local scale, the amount of litter is a highly important driver of total species richness, distribution and abundance patterns (relative influences 49, 72 and 83%, respectively) and across all functional groups (13-57%; excluding lichen species richness) in the sub-arctic river valley. Moreover, soil organic matter and soil water content shape vegetation patterns (on average 16 and 7%, respectively). Fluvial disturbance is a key limiting factor only for lichen, bryophyte and dwarf shrub species in this environment (on average 37, 6 and 10%, respectively). Fluvial disturbance intensity is the most important component of disturbance for most functional groups while the length of the disturbance-free period is more relevant for lichens. We conclude that striving for as accurate quantifications of environmental drivers as possible may reveal important processes and functional group differences and help anticipate future changes in vegetation. Mobile laser scanning, high-resolution digital elevation models and hydraulic modelling offer useful methodology for improving correlative vegetation models.


Assuntos
Monitoramento Ambiental , Modelos Teóricos
10.
Front Plant Sci ; 9: 299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29568306

RESUMO

Changing climate is increasing the amount and intensity of forest stress agents, such as drought, pest insects, and pathogens. Leaf water content, measured here in terms of equivalent water thickness (EWT), is an early indicator of tree stress that provides timely information about the health status of forests. Multispectral terrestrial laser scanning (MS-TLS) measures target geometry and reflectance simultaneously, providing spatially explicit reflectance information at several wavelengths. EWT and leaf internal structure affect leaf reflectance in the shortwave infrared region that can be used to predict EWT with MS-TLS. A second wavelength that is sensitive to leaf internal structure but not affected by EWT can be used to normalize leaf internal effects on the shortwave infrared region and improve the prediction of EWT. Here we investigated the relationship between EWT and laser intensity features using multisensor MS-TLS at 690, 905, and 1,550 nm wavelengths with both drought-treated and Endoconidiophora polonica inoculated Norway spruce seedlings to better understand how MS-TLS measurements can explain variation in EWT. In our study, a normalized ratio of two wavelengths at 905 and 1,550 nm and length of seedling explained 91% of the variation (R2) in EWT as the respective prediction accuracy for EWT was 0.003 g/cm2 in greenhouse conditions. The relation between EWT and the normalized ratio of 905 and 1,550 nm wavelengths did not seem sensitive to a decreased point density of the MS-TLS data. Based on our results, different EWTs in Norway spruce seedlings show different spectral responses when measured using MS-TLS. These results can be further used when developing EWT monitoring for improving forest health assessments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA