Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(20): 10682-10696, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30137486

RESUMO

Transcriptional regulation enables cells to respond to environmental changes. Of the estimated 304 candidate transcription factors (TFs) in Escherichia coli K-12 MG1655, 185 have been experimentally identified, but ChIP methods have been used to fully characterize only a few dozen. Identifying these remaining TFs is key to improving our knowledge of the E. coli transcriptional regulatory network (TRN). Here, we developed an integrated workflow for the computational prediction and comprehensive experimental validation of TFs using a suite of genome-wide experiments. We applied this workflow to (i) identify 16 candidate TFs from over a hundred uncharacterized genes; (ii) capture a total of 255 DNA binding peaks for ten candidate TFs resulting in six high-confidence binding motifs; (iii) reconstruct the regulons of these ten TFs by determining gene expression changes upon deletion of each TF and (iv) identify the regulatory roles of three TFs (YiaJ, YdcI, and YeiE) as regulators of l-ascorbate utilization, proton transfer and acetate metabolism, and iron homeostasis under iron-limited conditions, respectively. Together, these results demonstrate how this workflow can be used to discover, characterize, and elucidate regulatory functions of uncharacterized TFs in parallel.


Assuntos
Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fatores de Transcrição/metabolismo
2.
PeerJ ; 9: e11333, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987016

RESUMO

BACKGROUND: High-throughput sequencing platforms generate a massive amount of high-dimensional genomic datasets that are available for analysis. Modern and user-friendly bioinformatics tools for analysis and interpretation of genomics data becomes essential during the analysis of sequencing data. Different standard data types and file formats have been developed to store and analyze sequence and genomics data. Variant Call Format (VCF) is the most widespread genomics file type and standard format containing genomic information and variants of sequenced samples. RESULTS: Existing tools for processing VCF files don't usually have an intuitive graphical interface, but instead have just a command-line interface that may be challenging to use for the broader biomedical community interested in genomics data analysis. re-Searcher solves this problem by pre-processing VCF files by chunks to not load RAM of computer. The tool can be used as standalone user-friendly multiplatform GUI application as well as web application (https://nla-lbsb.nu.edu.kz). The software including source code as well as tested VCF files and additional information are publicly available on the GitHub repository (https://github.com/LabBandSB/re-Searcher).

3.
FEMS Microbiol Lett ; 365(20)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30256945

RESUMO

It is fundamental to understand the relationship between genotype and phenotype in biology. This requires comprehensive knowledge of metabolic pathways, genetic information and well-defined mathematic modeling. Integration of knowledge on metabolism with mathematical modeling results in genome-scale metabolic models which have proven useful to investigate bacterial metabolism and to engineer bacterial strains capable of producing value-added biochemical. Single carbon substrates such as methane and carbon monoxide have drawn interests and they assumed one of next-generation feedstocks because of their high abundance and low price. The methylotroph and acetogen-based biorefineries hold promises for bioconversion of C1 substrates into biofuels and high value compounds. As an effort on expanding our knowledge on C1 utilization approaches, in silico computational framework of C1-metabolism in methylotrophic and acetogenic bacteria has been developed. In this review, genome-scale metabolic models for C1-utilizing bacteria and well-established analysis tools are presented for potential uses for study of C1 metabolism at the genome scale and its application in metabolic engineering.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Redes e Vias Metabólicas/genética , Modelos Teóricos , Monóxido de Carbono/metabolismo , Simulação por Computador , Metano/metabolismo
4.
Sci Data ; 5: 180242, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30422127

RESUMO

Kazakhstan's soil properties have yet to be comprehensively characterized. We sampled 40 sites consisting of ten major soil types at spring (wet) and late-summer (dry) seasons. The sample locations range from semi-arid to arid with an annual mean air temperature from 1.2 to 10.7 °C and annual precipitation from less than 200 to around 400 mm. Overall topsoil total (STC), organic (SOC), and inorganic (SIC) carbon did not change significantly between spring and late summer. STC and SOC show a wave like pattern from north to south with two maxima in northern and southern Kazakhstan and one minimum in central Kazakhstan. With a few exceptions SIC content at northern sites is generally low, whereas at Lake Balkhash SIC can exceed 75% of STC. Independent of the seasons, SOC significantly differed among soil types. Total nitrogen content distribution among our sampling sites followed a similar pattern as SOC with significant differences between soil types occurring in northern, central and southern Kazakhstan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA