Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Bioorg Chem ; 93: 102896, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30952450

RESUMO

Surfactin is obtained through biocatalysis by microorganisms. In our biorefinery concept, it is purified on activated carbon (AC) during downstream processing. Besides cyclic surfactin, it is possible to obtain linear surfactin analogues, when AC with specific properties is used. In the present article, the hydrolysis of various cyclic surfactin analogues mediated by activated carbon is described. Hydrolysis products were identified using HPLC/UV/MS and (Q-TOF)MS/MS. Hydrolytic activity of six commercial and three modified activated carbons was evaluated. The porous texture of ACs was determined by sorption measurements and elemental composition of ACs surface - by SEM-EDS analysis. Their pHPZC value and moisture, ash, and volatile matter content using proximate analysis were also determined. Properties of ACs were correlated with their hydrolytic activity, and the crucial role of alkaline pHPZC was found. The beneficial effect of alkaline pHPZC was further confirmed by acid modification of AC that had previously shown hydrolytic activity and lost this ability after the pHPZC decrease.


Assuntos
Carvão Vegetal , Lipopeptídeos/química , Peptídeos Cíclicos/química , Brassica napus/química , Hidrólise , Conformação Proteica
2.
Nanomedicine ; 17: 266-275, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30794962

RESUMO

The complement system plays an essential role in both innate and adaptive immunity. The traditional understanding of this system comes from studies investigating complement proteins produced by the liver and present in plasma to "complement" the immune cell-mediated response to invading pathogens. Recently, it has been reported that immune cells including, but not limited to, T-cells and monocytes, express complement proteins. This complement is referred to as intracellular (IC) and implicated in the regulation of T-cell activation. The mechanisms and the structure-activity relationship between nanomaterials and IC, however, are currently unknown. Herein, we describe a structure-activity relationship study demonstrating that under in vitro conditions, only polymeric materials with cationic surfaces activate IC in T-cells. The effect also depends on particle size and occurs through a mechanism involving membrane damage, thereby IC on the cell surface serves as a self-opsonization marker in response to the nanoparticle-triggered danger affecting the cell integrity.


Assuntos
Ativação do Complemento , Ativação Linfocitária , Nanopartículas/efeitos adversos , Polímeros/efeitos adversos , Linfócitos T/imunologia , Cátions/efeitos adversos , Cátions/química , Células Cultivadas , Ativação do Complemento/efeitos dos fármacos , Humanos , Células Jurkat , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Nanopartículas/química , Polímeros/química , Linfócitos T/efeitos dos fármacos
3.
Phys Rev Lett ; 118(20): 203203, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28581781

RESUMO

Rotation of molecules embedded in helium nanodroplets is explored by a combination of fs laser-induced alignment experiments and angulon quasiparticle theory. We demonstrate that at low fluence of the fs alignment pulse, the molecule and its solvation shell can be set into coherent collective rotation lasting long enough to form revivals. With increasing fluence, however, the revivals disappear-instead, rotational dynamics as rapid as for an isolated molecule is observed during the first few picoseconds. Classical calculations trace this phenomenon to transient decoupling of the molecule from its helium shell. Our results open novel opportunities for studying nonequilibrium solute-solvent dynamics and quantum thermalization.

4.
Front Genet ; 12: 602196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841493

RESUMO

The heavy burden imposed by the COVID-19 pandemic on our society triggered the race toward the development of therapies or preventive strategies. Among these, antibodies and vaccines are particularly attractive because of their high specificity, low probability of drug-drug interaction, and potentially long-standing protective effects. While the threat at hand justifies the pace of research, the implementation of therapeutic strategies cannot be exempted from safety considerations. There are several potential adverse events reported after the vaccination or antibody therapy, but two are of utmost importance: antibody-dependent enhancement (ADE) and cytokine storm syndrome (CSS). On the other hand, the depletion or exhaustion of T-cells has been reported to be associated with worse prognosis in COVID-19 patients. This observation suggests a potential role of vaccines eliciting cellular immunity, which might simultaneously limit the risk of ADE and CSS. Such risk was proposed to be associated with FcR-induced activation of proinflammatory macrophages (M1) by Fu et al. (2020) and Iwasaki and Yang (2020). All aspects of the newly developed vaccine (including the route of administration, delivery system, and adjuvant selection) may affect its effectiveness and safety. In this work we use a novel in silico approach (based on AI and bioinformatics methods) developed to support the design of epitope-based vaccines. We evaluated the capabilities of our method for predicting the immunogenicity of epitopes. Next, the results of our approach were compared with other vaccine-design strategies reported in the literature. The risk of immuno-toxicity was also assessed. The analysis of epitope conservation among other Coronaviridae was carried out in order to facilitate the selection of peptides shared across different SARS-CoV-2 strains and which might be conserved in emerging zootic coronavirus strains. Finally, the potential applicability of the selected epitopes for the development of a vaccine eliciting cellular immunity for COVID-19 was discussed, highlighting the benefits and challenges of such an approach.

5.
Oncotarget ; 12(20): 2022-2038, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34611477

RESUMO

Lung cancer is the leading cause of cancer-related deaths in the USA and worldwide. Yet, about 95% of new drug candidates validated in preclinical phase eventually fail in clinical trials. Such a high attrition rate is attributed mostly to the inability of conventional two-dimensionally (2D) cultured cancer cells to mimic native three-dimensional (3D) growth of malignant cells in human tumors. To ascertain phenotypical differences between these two distinct culture conditions, we carried out a comparative proteomic analysis of a membrane fraction obtained from 3D- and 2D-cultured NSCLC model cell line NCI-H23. This analysis revealed a map of 1,166 (24%) protein species regulated in culture dependent manner, including differential regulation of a subset of cell surface-based CD molecules. We confirmed exclusive expression of CD99, CD146 and CD239 in 3D culture. Furthermore, label-free quantitation, targeting KRas proteoform-specific peptides, revealed upregulation of both wild type and monoallelic KRas4BG12C mutant at the surface of 3D cultured cells. In order to reduce the high attrition rate of new drug candidates, the results of this study strongly suggests exploiting base-line molecular profiling of a large number of patient-derived NSCLC cell lines grown in 2D and 3D culture, prior to actual drug candidate testing.

6.
Front Immunol ; 12: 765898, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858420

RESUMO

Immunotherapies are revolutionizing cancer care, producing durable responses and potentially cures in a subset of patients. However, response rates are low for most tumors, grade 3/4 toxicities are not uncommon, and our current understanding of tumor immunobiology is incomplete. While hundreds of immunomodulatory proteins in the tumor microenvironment shape the anti-tumor response, few of them can be reliably quantified. To address this need, we developed a multiplex panel of targeted proteomic assays targeting 52 peptides representing 46 proteins using peptide immunoaffinity enrichment coupled to multiple reaction monitoring-mass spectrometry. We validated the assays in tissue and plasma matrices, where performance figures of merit showed over 3 orders of dynamic range and median inter-day CVs of 5.2% (tissue) and 21% (plasma). A feasibility study in clinical biospecimens showed detection of 48/52 peptides in frozen tissue and 38/52 peptides in plasma. The assays are publicly available as a resource for the research community.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Manejo de Espécimes/métodos , Anticorpos/análise , Anticorpos/imunologia , Western Blotting , Linhagem Celular Tumoral , Células HeLa , Humanos , Células Jurkat , Células MCF-7 , Peptídeos/sangue , Peptídeos/imunologia , Proteoma/genética , Proteoma/imunologia , RNA-Seq/métodos , Reprodutibilidade dos Testes
7.
Cancers (Basel) ; 13(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34359745

RESUMO

The ATM serine/threonine kinase (HGNC: ATM) is involved in initiation of repair of DNA double-stranded breaks, and ATM inhibitors are currently being tested as anti-cancer agents in clinical trials, where pharmacodynamic (PD) assays are crucial to help guide dose and scheduling and support mechanism of action studies. To identify and quantify PD biomarkers of ATM inhibition, we developed and analytically validated a 51-plex assay (DDR-2) quantifying protein expression and DNA damage-responsive phosphorylation. The median lower limit of quantification was 1.28 fmol, the linear range was over 3 orders of magnitude, the median inter-assay variability was 11% CV, and 86% of peptides were stable for storage prior to analysis. Use of the assay was demonstrated to quantify signaling following ionizing radiation-induced DNA damage in both immortalized lymphoblast cell lines and primary human peripheral blood mononuclear cells, identifying PD biomarkers for ATM inhibition to support preclinical and clinical studies.

8.
J Cheminform ; 12(1): 2, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33431006

RESUMO

Designing a molecule with desired properties is one of the biggest challenges in drug development, as it requires optimization of chemical compound structures with respect to many complex properties. To improve the compound design process, we introduce Mol-CycleGAN-a CycleGAN-based model that generates optimized compounds with high structural similarity to the original ones. Namely, given a molecule our model generates a structurally similar one with an optimized value of the considered property. We evaluate the performance of the model on selected optimization objectives related to structural properties (presence of halogen groups, number of aromatic rings) and to a physicochemical property (penalized logP). In the task of optimization of penalized logP of drug-like molecules our model significantly outperforms previous results.

9.
Cell Syst ; 11(2): 186-195.e9, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32710834

RESUMO

Cancer is driven by genomic alterations, but the processes causing this disease are largely performed by proteins. However, proteins are harder and more expensive to measure than genes and transcripts. To catalyze developments of methods to infer protein levels from other omics measurements, we leveraged crowdsourcing via the NCI-CPTAC DREAM proteogenomic challenge. We asked for methods to predict protein and phosphorylation levels from genomic and transcriptomic data in cancer patients. The best performance was achieved by an ensemble of models, including as predictors transcript level of the corresponding genes, interaction between genes, conservation across tumor types, and phosphosite proximity for phosphorylation prediction. Proteins from metabolic pathways and complexes were the best and worst predicted, respectively. The performance of even the best-performing model was modest, suggesting that many proteins are strongly regulated through translational control and degradation. Our results set a reference for the limitations of computational inference in proteogenomics. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Crowdsourcing/métodos , Genômica/métodos , Aprendizado de Máquina/normas , Neoplasias/genética , Fosfoproteínas/metabolismo , Proteínas/genética , Proteômica/métodos , Transcriptoma/genética , Feminino , Humanos , Masculino
10.
Sci Data ; 6(1): 160, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467290

RESUMO

RAS genes are frequently mutated in cancer and have for decades eluded effective therapeutic attack. The National Cancer Institute's RAS Initiative has a focus on understanding pathways and discovering therapies for RAS-driven cancers. Part of these efforts is the generation of novel reagents to enable the quantification of RAS network proteins. Here we present a dataset describing the development, validation (following consensus principles developed by the broader research community), and distribution of 104 monoclonal antibodies (mAbs) enabling detection of 27 phosphopeptides and 69 unmodified peptides from 20 proteins in the RAS network. The dataset characterizes the utility of the antibodies in a variety of applications, including Western blotting, immunoprecipitation, protein array, immunohistochemistry, and targeted mass spectrometry. All antibodies and characterization data are publicly available through the CPTAC Antibody Portal, Panorama Public Repository, and/or PRIDE databases. These reagents will aid researchers in discerning pathways and measuring expression changes in the RAS signaling network.


Assuntos
Anticorpos Monoclonais/química , Genes ras , Transdução de Sinais , Linhagem Celular , Impressões Digitais de DNA , Humanos , Indicadores e Reagentes/química , Repetições de Microssatélites , Neoplasias/genética
11.
Radiat Res ; 189(5): 505-518, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29474155

RESUMO

A lack of analytically robust and multiplexed assays has hampered studies of the large, branched phosphosignaling network responsive to DNA damage. To address this need, we developed and fully analytically characterized a 62-plex assay quantifying protein expression and post-translational modification (phosphorylation and ubiquitination) after induction of DNA damage. The linear range was over 3 orders of magnitude, the median inter-assay variability was 10% CV and the vast majority (∼85%) of assays were stable after extended storage. The multiplexed assay was applied in proof-of-principle studies to quantify signaling after exposure to genotoxic stress (ionizing radiation and 4-nitroquinoline 1-oxide) in immortalized cell lines and primary human cells. The effects of genomic variants and pharmacologic kinase inhibition (ATM/ATR) were profiled using the assay. This study demonstrates the utility of a quantitative multiplexed assay for studying cellular signaling dynamics, and the potential application to studies on inter-individual variation in the radiation response.


Assuntos
Dano ao DNA , Espectrometria de Massas , Fosfoproteínas/metabolismo , Transdução de Sinais/genética , Sequência de Aminoácidos , Células HeLa , Humanos , Fosfoproteínas/química , Fosforilação/genética , Processamento de Proteína Pós-Traducional/genética , Ubiquitinação/genética
12.
Oncotarget ; 9(41): 26431-26452, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29899869

RESUMO

The most widely used cancer animal model is the human-murine tumor xenograft. Unbiased molecular dissection of tumor parenchyma versus stroma in human-murine xenografts is critical for elucidating dysregulated protein networks/pathways and developing therapeutics that may target these two functionally codependent compartments. Although antibody-reliant technologies (e.g., immunohistochemistry, imaging mass cytometry) are capable of distinguishing tumor-proper versus stromal proteins, the breadth or extent of targets is limited. Here, we report an antibody-free targeted cross-species glycoproteomic (TCSG) approach that enables direct dissection of human tumor parenchyma from murine tumor stroma at the molecular/protein level in tumor xenografts at a selectivity rate presently unattainable by other means. This approach was used to segment/dissect and obtain the protein complement phenotype of the tumor stroma and parenchyma of the metastatic human lung adenocarcinoma A549 xenograft, with no need for tissue microdissection prior to mass-spectrometry analysis. An extensive molecular map of the tumor proper and the associated microenvironment was generated along with the top functional N-glycosylated protein networks enriched in each compartment. Importantly, immunohistochemistry-based cross-validation of selected parenchymal and stromal targets applied on human tissue samples of lung adenocarcinoma and normal adjacent tissue is indicative of a noteworthy translational capacity for this unique approach that may facilitate identifications of novel targets for next generation antibody therapies and development of real time preclinical tumor models.

13.
PLoS One ; 13(6): e0199361, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928062

RESUMO

The presence of cancer stem cells (CSCs) and the induction of epithelial-to-mesenchymal transition (EMT) in tumors are associated with tumor aggressiveness, metastasis, drug resistance, and poor prognosis, necessitating the development of reagents for unambiguous detection of CSC- and EMT-associated proteins in tumor specimens. To this end, we generated novel antibodies to EMT- and CSC-associated proteins, including Goosecoid, Sox9, Slug, Snail, and CD133. Importantly, unlike several widely used antibodies to CD133, the anti-CD133 antibodies we generated recognize epitopes distal to known glycosylation sites, enabling analyses that are not confounded by differences in CD133 glycosylation. For all target proteins, we selected antibodies that yielded the expected target protein molecular weights by Western analysis and the correct subcellular localization patterns by immunofluorescence microscopy assay (IFA); binding selectivity was verified by immunoprecipitation-mass spectrometry and by immunohistochemistry and IFA peptide blocking experiments. Finally, we applied these reagents to assess modulation of the respective markers of EMT and CSCs in xenograft tumor models by IFA. We observed that the constitutive presence of human hepatocyte growth factor (hHGF) in the tumor microenvironment of H596 non-small cell lung cancer tumors implanted in homozygous hHGF knock-in transgenic mice induced a more mesenchymal-like tumor state (relative to the epithelial-like state when implanted in control SCID mice), as evidenced by the elevated expression of EMT-associated transcription factors detected by our novel antibodies. Similarly, our new anti-CD133 antibody enabled detection and quantitation of drug-induced reductions in CD133-positive tumor cells following treatment of SUM149PT triple-negative breast cancer xenograft models with the CSC/focal adhesion kinase (FAK) inhibitor VS-6063. Thus, our novel antibodies to CSC- and EMT-associated factors exhibit sufficient sensitivity and selectivity for immunofluorescence microscopy studies of these processes in preclinical xenograft tumor specimens and the potential for application with clinical samples.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/efeitos dos fármacos , Antígeno AC133/metabolismo , Animais , Anticorpos Monoclonais/biossíntese , Antineoplásicos/uso terapêutico , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Técnicas de Introdução de Genes , Fator de Crescimento de Hepatócito/genética , Humanos , Indicadores e Reagentes , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Transgênicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Phys Condens Matter ; 29(8): 085604, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28092633

RESUMO

We investigate the effect of the electron-hole (e-h) symmetry breaking on d-wave superconductivity induced by non-local effects of correlations in the generalized Hubbard model. The symmetry breaking is introduced in a two-fold manner: by the next-to-nearest neighbor hopping of electrons and by the charge-bond interaction-the off-diagonal term of the Coulomb potential. Both terms lead to a pronounced asymmetry of the superconducting order parameter. The next-to-nearest neighbor hopping enhances superconductivity for h-doping, while diminishes it for e-doping. The charge-bond interaction alone leads to the opposite effect and, additionally, to the kinetic-energy gain upon condensation in the underdoped regime. With both terms included, with similar amplitudes, the height of the superconducting dome and the critical doping remain in favor of h-doping. The influence of the charge-bond interaction on deviations from [Formula: see text] symmetry of the shape of the gap at the Fermi surface in the momentum space is briefly discussed.

15.
J Phys Condens Matter ; 28(17): 175701, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27023047

RESUMO

We study the superconducting phase of the Hubbard model using the Gutzwiller variational wave function (GWF) and the recently proposed diagrammatic expansion technique (DE-GWF). The DE-GWF method works on the level of the full GWF and in the thermodynamic limit. Here, we consider a finite-size system to study the accuracy of the results as a function of the system size (which is practically unrestricted). We show that the finite-size scaling used, e.g. in the variational Monte Carlo method can lead to significant, uncontrolled errors. The presented research is the first step towards applying the DE-GWF method in studies of inhomogeneous situations, including systems with impurities, defects, inhomogeneous phases, or disorder.

16.
J Phys Condens Matter ; 22(35): 355702, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-21403296

RESUMO

We discuss a detailed phase diagram and other microscopic characteristics on the applied magnetic field-temperature (H(a)-T) plane for a simple model of a correlated fluid represented by a two-dimensional (2D) gas of heavy quasiparticles with masses dependent on the spin direction and the effective field generated by the electron correlations. The consecutive transitions between the Bardeen-Cooper-Schrieffer (BCS) and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases are either continuous or discontinuous, depending on the values of H(a) and T. In the latter case, weak metamagnetic transitions occur at the BCS-FFLO boundary. We single out two different FFLO phases, as well as a re-entrant behaviour of one of them at high fields. The results are compared with those for ordinary Landau quasiparticles in order to demonstrate the robustness of the FFLO states against the BCS state for the case with spin-dependent masses (SDM). We believe that the mechanism of FFLO stabilization by SDM is generic: other high-field low-temperature (HFLT) superconducting phases should benefit from SDM as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA