Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338726

RESUMO

Phenobarbital (PB) remains the first-line medication for neonatal seizures. Yet, seizures in many newborns, particularly those associated with perinatal ischemia, are resistant to PB. Previous animal studies have shown that in postnatal day P7 mice pups with ischemic stroke induced by unilateral carotid ligation, the tyrosine receptor kinase B (TrkB) antagonist ANA12 (N-[2-[[(hexahydro-2-oxo-1H-azepin-3-yl)amino]carbonyl]phenyl]-benzo[b]thiophene-2-carboxamide, 5 mg/kg) improved the efficacy of PB in reducing seizure occurrence. To meet optimal standards of effectiveness, a wider range of ANA12 doses must be tested. Here, using the unilateral carotid ligation model, we tested the effectiveness of higher doses of ANA12 (10 and 20 mg/kg) on the ability of PB to reduce seizure burden, ameliorate cell death (assessed by Fluoro-Jade staining), and affect neurodevelopment (righting reflex, negative geotaxis test, open field test). We found that a single dose of ANA12 (10 or 20 mg/kg) given 1 h after unilateral carotid ligation in P7 pups reduced seizure burden and neocortical and striatal neuron death without impairing developmental reflexes. In conclusion, ANA12 at a range of doses (10-20 mg/kg) enhanced PB effectiveness for the treatment of perinatal ischemia-related seizures, suggesting that this agent might be a clinically safe and effective adjunctive agent for the treatment of pharmacoresistant neonatal seizures.


Assuntos
Epilepsia , Hipóxia-Isquemia Encefálica , Animais , Camundongos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Animais Recém-Nascidos , Modelos Animais de Doenças , Convulsões/tratamento farmacológico , Convulsões/etiologia , Convulsões/metabolismo , Fenobarbital/farmacologia , Fenobarbital/uso terapêutico , Epilepsia/tratamento farmacológico , Isquemia/tratamento farmacológico , Hipóxia-Isquemia Encefálica/tratamento farmacológico
2.
Int J Mol Sci ; 20(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618813

RESUMO

Rett syndrome (RTT) and CDKL5 deficiency disorder (CDD) are two rare X-linked developmental brain disorders with overlapping but distinct phenotypic features. This review examines the impact of loss of methyl-CpG-binding protein 2 (MeCP2) and cyclin-dependent kinase-like 5 (CDKL5) on clinical phenotype, deficits in synaptic- and circuit-homeostatic mechanisms, seizures, and sleep. In particular, we compare the overlapping and contrasting features between RTT and CDD in clinic and in preclinical studies. Finally, we discuss lessons learned from recent clinical trials while reviewing the findings from pre-clinical studies.


Assuntos
Síndromes Epilépticas/diagnóstico , Síndromes Epilépticas/etiologia , Síndromes Epilépticas/terapia , Síndrome de Rett/diagnóstico , Síndrome de Rett/etiologia , Síndrome de Rett/terapia , Espasmos Infantis/diagnóstico , Espasmos Infantis/etiologia , Espasmos Infantis/terapia , Animais , Ensaios Clínicos como Assunto , Diagnóstico Diferencial , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação , Avaliação de Resultados em Cuidados de Saúde , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pesquisa Translacional Biomédica
3.
Nano Lett ; 17(2): 652-659, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28094959

RESUMO

Targeted, noninvasive neuromodulation of the brain of an otherwise awake subject could revolutionize both basic and clinical neuroscience. Toward this goal, we have developed nanoparticles that allow noninvasive uncaging of a neuromodulatory drug, in this case the small molecule anesthetic propofol, upon the application of focused ultrasound. These nanoparticles are composed of biodegradable and biocompatible constituents and are activated using sonication parameters that are readily achievable by current clinical transcranial focused ultrasound systems. These particles are potent enough that their activation can silence seizures in an acute rat seizure model. Notably, there is no evidence of brain parenchymal damage or blood-brain barrier opening with their use. Further development of these particles promises noninvasive, focal, and image-guided clinical neuromodulation along a variety of pharmacological axes.


Assuntos
Encéfalo/efeitos dos fármacos , Emulsões/química , Nanopartículas/química , Neurotransmissores/administração & dosagem , Anestésicos/administração & dosagem , Anestésicos/química , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Portadores de Fármacos , Liberação Controlada de Fármacos , Fluorocarbonos/química , Imageamento por Ressonância Magnética , Neurotransmissores/química , Imagem Óptica , Propofol/administração & dosagem , Propofol/química , Ratos , Convulsões/tratamento farmacológico , Distribuição Tecidual , Ondas Ultrassônicas
4.
Epilepsia ; 58 Suppl 4: 10-27, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29105073

RESUMO

In vivo electrophysiological recordings are widely used in neuroscience research, and video-electroencephalography (vEEG) has become a mainstay of preclinical neuroscience research, including studies of epilepsy and cognition. Studies utilizing vEEG typically involve comparison of measurements obtained from different experimental groups, or from the same experimental group at different times, in which one set of measurements serves as "control" and the others as "test" of the variables of interest. Thus, controls provide mainly a reference measurement for the experimental test. Control rodents represent an undiagnosed population, and cannot be assumed to be "normal" in the sense of being "healthy." Certain physiological EEG patterns seen in humans are also seen in control rodents. However, interpretation of rodent vEEG studies relies on documented differences in frequency, morphology, type, location, behavioral state dependence, reactivity, and functional or structural correlates of specific EEG patterns and features between control and test groups. This paper will focus on the vEEG of standard laboratory rodent strains with the aim of developing a small set of practical guidelines that can assist researchers in the design, reporting, and interpretation of future vEEG studies. To this end, we will: (1) discuss advantages and pitfalls of common vEEG techniques in rodents and propose a set of recommended practices and (2) present EEG patterns and associated behaviors recorded from adult rats of a variety of strains. We will describe the defining features of selected vEEG patterns (brain-generated or artifactual) and note similarities to vEEG patterns seen in adult humans. We will note similarities to normal variants or pathological human EEG patterns and defer their interpretation to a future report focusing on rodent seizure patterns.


Assuntos
Encéfalo/fisiopatologia , Eletroencefalografia/normas , Processamento Eletrônico de Dados , Epilepsia/diagnóstico , Pesquisa Translacional Biomédica , Gravação em Vídeo/normas , Comitês Consultivos , Animais , Eletroencefalografia/métodos , Camundongos , Ratos , Sociedades Médicas/normas , Gravação em Vídeo/métodos
5.
Nucleic Acids Res ; 42(1): 235-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24097435

RESUMO

Symmetrical dimethylation on arginine-3 of histone H4 (H4R3me2s) has been reported to occur at several repressed genes, but its specific regulation and genomic distribution remained unclear. Here, we show that the type-II protein arginine methyltransferase PRMT5 controls H4R3me2s in mouse embryonic fibroblasts (MEFs). In these differentiated cells, we find that the genome-wide pattern of H4R3me2s is highly similar to that in embryonic stem cells. In both the cell types, H4R3me2s peaks are detected predominantly at G + C-rich regions. Promoters are consistently marked by H4R3me2s, independently of transcriptional activity. Remarkably, H4R3me2s is mono-allelic at imprinting control regions (ICRs), at which it marks the same parental allele as H3K9me3, H4K20me3 and DNA methylation. These repressive chromatin modifications are regulated independently, however, since PRMT5-depletion in MEFs resulted in loss of H4R3me2s, without affecting H3K9me3, H4K20me3 or DNA methylation. Conversely, depletion of ESET (KMT1E) or SUV420H1/H2 (KMT5B/C) affected H3K9me3 and H4K20me3, respectively, without altering H4R3me2s at ICRs. Combined, our data indicate that PRMT5-mediated H4R3me2s uniquely marks the mammalian genome, mostly at G + C-rich regions, and independently from transcriptional activity or chromatin repression. Furthermore, comparative bioinformatics analyses suggest a putative role of PRMT5-mediated H4R3me2s in chromatin configuration in the nucleus.


Assuntos
Arginina/metabolismo , Cromatina/enzimologia , Sequência Rica em GC , Histonas/metabolismo , Proteínas Metiltransferases/metabolismo , Alelos , Animais , Células Cultivadas , Metilação de DNA , Fibroblastos/enzimologia , Genoma , Impressão Genômica , Histonas/química , Metilação , Camundongos , Regiões Promotoras Genéticas , Proteína-Arginina N-Metiltransferases
6.
Epilepsia ; 55(8): 1170-86, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24965021

RESUMO

New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming, and optogenetic manipulations within epileptic networks are progressively unraveling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiologic effects of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy (WONOEP 2013) in Quebec, Canada. Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and has revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knock-down approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type-specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. In addition, genetically encoded cell-type labeling is providing new means to assess the role of the nonneuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and noncoding ribonucleic acid (RNA) involved in modifying gene expression following seizures. In addition, genetically based bioluminescent reporters are providing new opportunities to assess neuronal activity and neurotransmitter levels both in vitro and in vivo in the context of epilepsy. Finally, genetically rederived neurons generated from patient induced pluripotent stem cells and genetically modified zebrafish have become high-throughput means to investigate disease mechanisms and potential new therapies. Genetics has changed the field of epilepsy research considerably, and is paving the way for better diagnosis and therapies for patients with epilepsy.


Assuntos
Educação/métodos , Epigênese Genética/genética , Epilepsia/diagnóstico , Epilepsia/genética , Hibridização Genética/genética , Animais , Humanos , MicroRNAs/genética
7.
Front Neurol ; 14: 1221161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662032

RESUMO

Introduction: Preclinical studies in a mouse model have shown that SYNGAP1 haploinsufficiency results in an epilepsy phenotype with excessive GluA2-AMPA insertion specifically on the soma of fast-spiking parvalbumin-positive interneurons associated with significant dysfunction of cortical gamma homeostasis that was rescued by perampanel (PER), an AMPA receptor blocker. In this single case, we aimed to investigate the presence of dysregulated cortical gamma in a toddler with a pathogenic SYNGAP1 variant and report on the effect of low-dose PER on electroencephalogram (EEG) and clinical profile. Methods: Clinical data from physician's clinic notes; genetic testing reports; developmental scores from occupational therapy, physical therapy, speech and language therapy evaluations; and applied behavioral analysis reports were reviewed. Developmental assessments and EEG analysis were done pre- and post-PER. Results: Clinically, the patient showed improvements in the developmental profile and sleep quality post-PER. EEG spectral power analysis in our patient revealed a loss of gamma power modulation with behavioral-state transitions similar to what was observed in Syngap1+/- mice. Furthermore, the administration of low-dose PER rescued the dysfunctional cortical gamma homeostasis, similar to the preclinical study. However, as in the epileptic mice, PER did not curb epileptiform discharges or clinical seizures. Conclusion: Similar to the Syngap1+/- mice, cortical gamma homeostasis was dysregulated in the patient. This dysfunction was rescued by PER. These encouraging results necessitate further validation of gamma dysregulation as a potential translational EEG biomarker in SYNAP1-DEE. Low-dose PER can be explored as a therapeutic option through clinical trials.

8.
Epilepsia Open ; 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35938285

RESUMO

The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force initiated the TASK3 working group to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. This article addresses neuropathological changes associated with seizures and epilepsy in rodent models of epilepsy. We discuss CDEs for histopathological parameters for neurodegeneration, changes in astrocyte morphology and function, mechanisms of inflammation, and changes in the blood-brain barrier and myelin/oligodendrocytes resulting from recurrent seizures in rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the rationale and methodological aspects of individual neuropathological examinations. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of rational therapy concepts for treating epilepsies, seizures, and comorbidities and the development of biomarkers assessing the pathological state of the disease.

9.
J Neurosci ; 30(1): 404-15, 2010 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-20053921

RESUMO

The development of acquired epilepsy after a perinatal hypoxic-ischemic (HI) insult was investigated in rats. After unilateral carotid ligation with hypoxia on postnatal day 7, cortical electroencephalographic and behavioral seizures were recorded with continuous radio-telemetry and video. Chronic recordings were obtained between 2 and 12 months of age in freely behaving HI-treated and sham control rats. The hypotheses were that the acquired epilepsy is directly associated with an ischemic infarct (i.e., no lesion, no epilepsy), and the resultant epilepsy is temporally progressive. Every HI-treated rat with a cerebral infarct developed spontaneous epileptiform discharges and recurrent seizures (100%); in contrast, no spontaneous epileptiform discharges or seizures were detected with continuous monitoring in the HI-treated rats without infarcts. The initial seizures at 2 months generally showed focal onset and were nonconvulsive. Subsequent seizures had focal onsets that propagated to the homotopic contralateral cortex and were nonconvulsive or partial; later seizures often appeared to have bilateral onset and were convulsive. Spontaneous epileptiform discharges were initially lateralized to ipsilateral neocortex but became bilateral over time. The severity and frequency of the spontaneous behavioral and electrographic seizures progressively increased over time. In every epileptic rat, seizures occurred in distinct clusters with seizure-free periods as long as a few weeks. The progressive increase in seizure frequency over time was associated with increases in cluster frequency and seizures within each cluster. Thus, prolonged, continuous seizure monitoring directly demonstrated that the acquired epilepsy after perinatal HI was progressive with seizure clusters and was consistently associated with a cerebral infarct.


Assuntos
Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Telemetria/métodos , Animais , Epilepsia/diagnóstico , Epilepsia/etiologia , Feminino , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/diagnóstico , Masculino , Monitorização Fisiológica/métodos , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico
10.
Stem Cells ; 28(2): 201-12, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20014010

RESUMO

Dynamic regulation of histone methylation by methyltransferases and demethylases plays a central role in regulating the fate of embryonic stem (ES) cells. The histone H3K9 methyltransferase KMT1E, formerly known as ESET or Setdb1, is essential to embryonic development as the ablation of the Setdb1 gene results in peri-implantation lethality and prevents the propagation of ES cells. However, Setdb1-null blastocysts do not display global changes in H3K9 methylation or DNA methylation, arguing against a genome-wide defect. Here we show that conditional deletion of the Setdb1 gene in ES cells results in the upregulation of lineage differentiation markers, especially trophectoderm-specific factors, similar to effects observed upon loss of Oct3/4 expression in ES cells. We demonstrate that KMT1E deficiency in ES cells leads to a decrease in histone H3K9 methylation at and derepression of trophoblast-associated genes such as Cdx2. Furthermore, we find genes that are derepressed upon Setdb1 deletion to overlap with known targets of polycomb mediated repression, suggesting that KMT1E mediated H3K9 methylation acts in concert with polycomb controlled H3K27 methylation. Our studies thus demonstrate an essential role for KMT1E in the control of developmentally regulated gene expression programs in ES cells.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas Metiltransferases/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Immunoblotting , Metilação , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Metiltransferases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tamoxifeno/farmacologia
11.
Curr Opin Cell Biol ; 14(3): 262-8, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12067647

RESUMO

Fundamental mechanisms that regulate chromatin assembly and transcription have been elucidated recently using genetics and highly defined biochemical systems. Once DNA is packaged into chromatin, its function is controlled by the ordered recruitment of diverse enzymatic complexes that structurally remodel or chemically modify nucleosomes. Recent studies provide insight into the functional selectivity of chromatin-remodeling and -modifying complexes and how they act in specific combinations to regulate individual genes and cellular pathways.


Assuntos
Cromatina/metabolismo , Transcrição Gênica , Acetiltransferases/metabolismo , Animais , Inativação Gênica , Histona Acetiltransferases , Cinética , Substâncias Macromoleculares , Modelos Genéticos , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Ativação Transcricional
12.
PLoS Genet ; 4(9): e1000190, 2008 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-18787701

RESUMO

Dot1 is an evolutionarily conserved histone methyltransferase specific for lysine 79 of histone H3 (H3K79). In Saccharomyces cerevisiae, Dot1-mediated H3K79 methylation is associated with telomere silencing, meiotic checkpoint control, and DNA damage response. The biological function of H3K79 methylation in mammals, however, remains poorly understood. Using gene targeting, we generated mice deficient for Dot1L, the murine Dot1 homologue. Dot1L-deficient embryos show multiple developmental abnormalities, including growth impairment, angiogenesis defects in the yolk sac, and cardiac dilation, and die between 9.5 and 10.5 days post coitum. To gain insights into the cellular function of Dot1L, we derived embryonic stem (ES) cells from Dot1L mutant blastocysts. Dot1L-deficient ES cells show global loss of H3K79 methylation as well as reduced levels of heterochromatic marks (H3K9 di-methylation and H4K20 tri-methylation) at centromeres and telomeres. These changes are accompanied by aneuploidy, telomere elongation, and proliferation defects. Taken together, these results indicate that Dot1L and H3K79 methylation play important roles in heterochromatin formation and in embryonic development.


Assuntos
Embrião de Mamíferos/enzimologia , Heterocromatina/metabolismo , Histonas/metabolismo , Metiltransferases/metabolismo , Proteínas Metiltransferases/metabolismo , Aneuploidia , Animais , Centrômero/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Heterocromatina/química , Histona Metiltransferases , Histona-Lisina N-Metiltransferase , Histonas/genética , Lisina/genética , Lisina/metabolismo , Metiltransferases/genética , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Mutação , Fenótipo , Telômero/metabolismo
13.
Aging Dis ; 12(4): 1056-1069, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34221549

RESUMO

Epilepsy is associated with a multitude of acquired or genetic neurological disorders characterized by a predisposition to spontaneous recurrent seizures. An estimated 15 million patients worldwide have ongoing seizures despite optimal management and are classified as having refractory epilepsy. Early-life seizures like those caused by perinatal hypoxic ischemic encephalopathy (HIE) remain a clinical challenge because although transient, they are difficult to treat and associated with poor neurological outcomes. Pediatric epilepsy syndromes are consistently associated with intellectual disability and neurocognitive comorbidities. HIE and arterial ischemic stroke are the most common causes of seizures in term neonates and account for 7.5-20% of neonatal seizures. Standard first-line treatments such as phenobarbital (PB) and phenytoin fail to curb seizures in ~50% of neonates. In the long-term, HIE can result in hippocampal sclerosis and temporal lobe epilepsy (TLE), which is the most common adult epilepsy, ~30% of which is associated with refractory seizures. For patients with refractory TLE seizures, a viable option is the surgical resection of the epileptic foci. Novel insights gained from investigating the developmental role of Cl- cotransporter function have helped to elucidate some of the mechanisms underlying the emergence of refractory seizures in both HIE and TLE. KCC2 as the chief Cl- extruder in neurons is critical for enabling strong hyperpolarizing synaptic inhibition in the brain and has been implicated in the pathophysiology underlying both conditions. More recently, KCC2 function has become a novel therapeutic target to combat refractory seizures.

14.
Pediatr Neurol ; 118: 35-39, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773288

RESUMO

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has an extensively studied classical role in neuronal growth, differentiation, survival, and plasticity. Neurotrophic, from the Greek neuro and trophos, roughly translates as "vital nutrition for the brain." During development, BDNF and its associated receptor tyrosine receptor kinase B are tightly regulated as they influence the formation and maturation of neuronal synapses. Preclinical research investigating the role of BDNF in neurological disorders has focused on the effects of decreased BDNF expression on the development and maintenance of neuronal synapses. In contrast, heightened BDNF-tyrosine receptor kinase B activity has received less scrutiny for its role in neurological disorders. Recent studies suggest that excessive BDNF-tyrosine receptor kinase B signaling in the developing brain may promote the hyperexcitability that underlies refractory neonatal seizures. This review will critically examine BDNF-tyrosine receptor kinase B signaling in the immature brain, its role in the emergence of refractory neonatal seizures, and the potential of targeting BDNF-TrkB signaling as a novel antiseizure strategy.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Convulsões/etiologia , Convulsões/terapia , Humanos , Recém-Nascido , Glicoproteínas de Membrana/fisiologia , Receptor trkB/fisiologia , Convulsões/metabolismo , Transdução de Sinais/fisiologia
15.
Sci Signal ; 14(708): eabg2648, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34752143

RESUMO

Neonatal seizures pose a clinical challenge in their early detection, acute management, and long-term comorbidities. They are often caused by hypoxic-ischemic encephalopathy and are frequently refractory to the first-line antiseizure medication phenobarbital. One proposed mechanism for phenobarbital inefficacy during neonatal seizures is the reduced abundance and function of the neuron-specific K+/Cl− cotransporter 2 (KCC2), which maintains chloride homeostasis and promotes GABAergic inhibition upon its phosphorylation during postnatal development. Here, we investigated whether this mechanism is causal and whether it can be rescued by KCC2 functional enhancement. In a CD-1 mouse model of refractory ischemic neonatal seizures, treatment with the KCC2 functional enhancer CLP290 rescued phenobarbital efficacy, increased KCC2 abundance, and prevented the development of epileptogenesis, as quantified by video electroencephalogram monitoring. These effects were prevented by knock-in expression of nonphosphorylatable mutants of KCC2 (S940A or T906A and T1007A), indicating that KCC2 phosphorylation regulates both neonatal seizure susceptibility and CLP290-mediated KCC2 functional enhancement. Our findings therefore validate KCC2 as a clinically relevant target for refractory neonatal seizures and provide insights for future drug development.


Assuntos
Epilepsia , Simportadores , Animais , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Isquemia , Camundongos , Convulsões/tratamento farmacológico
16.
Stroke ; 41(10 Suppl): S64-71, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20876509

RESUMO

BACKGROUND AND PURPOSE: Notch receptors (1-4) are membrane proteins that, on ligand stilumation, release their cytoplasmic domains to serve as transcription factors. Notch-2 promotes proliferation both during development and cancer, but its role in response to ischemic injury is less well understood. The purpose of this study was to understand whether Notch-2 is induced after neonatal stroke and to investigate its functional relevance. METHODS: P12 CD1 mice were subjected to permanent unilateral (right-sided) double ligation of the common carotid artery. RESULTS: Neonatal ischemia induces a progressive brain injury with prolonged apoptosis and Notch-2 up-regulation. Notch-2 expression was induced shortly after injury in hippocampal areas with elevated c-fos activation and increased cell death. Long-term induction of Notch-2 also occurred in CA1 and CA3 in and around areas of cell death, and had a distinct pattern of expression as compared to Notch-1. In vitro oxygen glucose deprivation treatment showed a similar increase in Notch-2 in apoptotic cells. In vitro gain of function experiments, using an active form of Notch-2, show that Notch-2 induction is neurotoxic to a comparable extent as oxygen glucose deprivation treatment. CONCLUSIONS: These results suggest that Notch-2 up-regulation after neonatal ischemia is detrimental to neuronal survival.


Assuntos
Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptor Notch2/metabolismo , Acidente Vascular Cerebral/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Apoptose , Western Blotting , Isquemia Encefálica/patologia , Contagem de Células , Hipocampo/patologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Microscopia de Fluorescência , Neurônios/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Acidente Vascular Cerebral/patologia , Fatores de Tempo , Regulação para Cima
17.
Stem Cells ; 27(9): 2175-84, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19591226

RESUMO

Embryonic stem (ES) cells require a coordinated network of transcription factors to maintain pluripotency or trigger lineage specific differentiation. Central to these processes are the proteins Oct4, Nanog, and Sox2. Although the transcriptional targets of these factors have been extensively studied, very little is known about how the proteins themselves are regulated, especially at the post-translational level. Post-translational modifications are well documented to have broad effects on protein stability, activity, and cellular distribution. Here, we identify a key lysine residue in the nuclear export signal of Sox2 that is acetylated, and demonstrate that blocking acetylation at this site retains Sox2 in the nucleus and sustains expression of its target genes under hyperacetylation or differentiation conditions. Mimicking acetylation at this site promotes association of Sox2 with the nuclear export machinery. In addition, increased cellular acetylation leads to reduction in Sox2 levels by ubiquitination and proteasomal degradation, thus abrogating its ability to drive transcription of its target genes. Acetylation-mediated nuclear export may be a commonly used regulatory mechanism for many Sox family members, as this lysine is conserved across species and in orthologous proteins.


Assuntos
Núcleo Celular/metabolismo , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Acetilação , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Imunoprecipitação da Cromatina , Cromatografia Líquida , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética , Espectrometria de Massas em Tandem , Fatores de Transcrição de p300-CBP/metabolismo
18.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32427585

RESUMO

Refractory neonatal seizures do not respond to first-line antiseizure medications like phenobarbital (PB), a positive allosteric modulator for GABAA receptors. GABAA receptor-mediated inhibition is dependent upon electroneutral cation-chloride transporter KCC2, which mediates neuronal chloride extrusion and its age-dependent increase and postnatally shifts GABAergic signaling from depolarizing to hyperpolarizing. Brain-derived neurotropic factor-tyrosine receptor kinase B activation (BDNF-TrkB activation) after excitotoxic injury recruits downstream targets like PLCγ1, leading to KCC2 hypofunction. Here, the antiseizure efficacy of TrkB agonists LM22A-4, HIOC, and deoxygedunin (DG) on PB-refractory seizures and postischemic TrkB pathway activation was investigated in a mouse model (CD-1, P7) of refractory neonatal seizures. LM, a BDNF loop II mimetic, rescued PB-refractory seizures in a sexually dimorphic manner. Efficacy was associated with a substantial reduction in the postischemic phosphorylation of TrkB at Y816, a site known to mediate postischemic KCC2 hypofunction via PLCγ1 activation. LM rescued ischemia-induced phospho-KCC2-S940 dephosphorylation, preserving its membrane stability. Full TrkB agonists HIOC and DG similarly rescued PB refractoriness. Chemogenetic inactivation of TrkB substantially reduced postischemic neonatal seizure burdens at P7. Sex differences identified in developmental expression profiles of TrkB and KCC2 may underlie the sexually dimorphic efficacy of LM. These results support a potentially novel role for the TrkB receptor in the emergence of age-dependent refractory neonatal seizures.


Assuntos
Encéfalo/efeitos dos fármacos , Receptor trkB/antagonistas & inibidores , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Receptor trkB/metabolismo , Convulsões/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Biol Psychiatry ; 87(9): 829-842, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32107006

RESUMO

BACKGROUND: Loss-of-function SYNGAP1 mutations cause a neurodevelopmental disorder characterized by intellectual disability and epilepsy. SYNGAP1 is a Ras GTPase-activating protein that underlies the formation and experience-dependent regulation of postsynaptic densities. The mechanisms that contribute to this proposed monogenic cause of intellectual disability and epilepsy remain unresolved. METHODS: We established the phenotype of the epileptogenesis in a Syngap1+/- mouse model using 24-hour video electroencephalography (vEEG)/electromyography recordings at advancing ages. We administered an acute low dose of perampanel, a Food and Drug Administration-approved AMPA receptor (AMPAR) antagonist, during a follow-on 24-hour vEEG to investigate the role of AMPARs in Syngap1 haploinsufficiency. Immunohistochemistry was performed to determine the region- and location-specific differences in the expression of the GluA2 AMPAR subunit. RESULTS: A progressive worsening of the epilepsy with emergence of multiple seizure phenotypes, interictal spike frequency, sleep dysfunction, and hyperactivity was identified in Syngap1+/- mice. Interictal spikes emerged predominantly during non-rapid eye movement sleep in 24-hour vEEG of Syngap1+/- mice. Myoclonic seizures occurred at behavioral-state transitions both in Syngap1+/- mice and during an overnight EEG from a child with SYNGAP1 haploinsufficiency. In Syngap1+/- mice, EEG spectral power analyses identified a significant loss of gamma power modulation during behavioral-state transitions. A significant region-specific increase of GluA2 AMPAR subunit expression in the somas of parvalbumin-positive interneurons was identified. CONCLUSIONS: Acute dosing with perampanel significantly rescued behavioral state-dependent cortical gamma homeostasis, identifying a novel mechanism implicating Ca2+-impermeable AMPARs on parvalbumin-positive interneurons underlying circuit dysfunction in SYNGAP1 haploinsufficiency.


Assuntos
Epilepsia , Parvalbuminas , Animais , Epilepsia/tratamento farmacológico , Epilepsia/genética , Interneurônios , Camundongos , Nitrilas , Piridonas , Regulação para Cima , Proteínas Ativadoras de ras GTPase/genética
20.
Neuroscience ; 445: 190-206, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32360592

RESUMO

Disruptions in the gene encoding methyl-CpG binding protein 2 (MECP2) underlie complex neurodevelopmental disorders including Rett Syndrome (RTT), MECP2 duplication disorder, intellectual disabilities, and autism. Significant progress has been made on the molecular and cellular basis of MECP2-related disorders providing a new framework for understanding how altered epigenetic landscape can derail the formation and refinement of neuronal circuits in early postnatal life and proper neurological function. This review will summarize selected major findings from the past years and particularly highlight the integrated and multidisciplinary work done at eight NIH-funded Intellectual and Developmental Disabilities Research Centers (IDDRC) across the US. Finally, we will outline a path forward with identification of reliable biomarkers and outcome measures, longitudinal preclinical and clinical studies, reproducibility of results across centers as a synergistic effort to decode and treat the pathogenesis of the complex MeCP2 disorders.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Síndrome de Rett , Proteínas de Transporte , Criança , Deficiências do Desenvolvimento , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação , Reprodutibilidade dos Testes , Síndrome de Rett/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA