Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37651481

RESUMO

Automated classification of cardiovascular diseases from electrocardiogram (ECG) signals using deep learning has gained significant interest due to its wide range of applications. However, existing deep learning approaches often overlook inter-channel shared information or lose time-sequence dependent information when considering 1D and 2D ECG representations, respectively. Moreover, besides considering spatial dimension, it is necessary to understand the context of the signals from a global feature space. We propose MD-CardioNet, an efficient deep learning architecture that captures temporal, spatial, and volumetric features from multi-lead ECG signals using multidimensional (1D, 2D, and 3D) convolutions to address these challenges. Sequential feature extractors capture time-dependent information, while a 2D convolution is applied to form an image representation from the multi-channel ECG signal, extracting inter-channel features. Additionally, a volumetric feature extraction network is designed to incorporate intra-channel, inter-channel, and inter-filter global space information. To reduce computational complexity, we introduce a practical knowledge distillation framework that reduces the number of trainable parameters by up to eight times ( from 4,304,910 parameters to 94,842 parameters) while maintaining satisfactory performance compatible with the other existing approaches. The proposed architecture is evaluated on a large publicly available dataset containing ECG signals from over 10,000 patients, achieving an accuracy of 97.3% in classifying six heartbeat rhythms. Our results surpass the performance of some state-of-the-art approaches. This paper presents a novel deep-learning approach for ECG classification that addresses the limitations of existing methods. The experimental results highlight the robustness and accuracy of MD-CardioNet in cardiovascular disease classification, offering valuable insights for future research in this field.

2.
medRxiv ; 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34013282

RESUMO

When the entire world is waiting restlessly for a safe and effective COVID-19 vaccine that could soon become a reality, numerous countries around the globe are grappling with unprecedented surges of new COVID-19 cases. As the number of new cases is skyrocketing, pandemic fatigue and public apathy towards different intervention strategies are posing new challenges to the government officials to combat the pandemic. Henceforth, it is indispensable for the government officials to understand the future dynamics of COVID-19 flawlessly in order to develop strategic preparedness and resilient response planning. In light of the above circumstances, probable future outbreak scenarios in Brazil, Russia and the United kingdom have been sketched in this study with the help of four deep learning models: long short term memory (LSTM), gated recurrent unit (GRU), convolutional neural network (CNN) and multivariate convolutional neural network (MCNN). In our analysis, CNN algorithm has outperformed other deep learning models in terms of validation accuracy and forecasting consistency. It has been unearthed in our study that CNN can provide robust long term forecasting results in time series analysis due to its capability of essential features learning, distortion invariance and temporal dependence learning. However, the prediction accuracy of LSTM algorithm has been found to be poor as it tries to discover seasonality and periodic intervals from any time series dataset, which were absent in our studied countries. Our study has highlighted the promising validation of using convolutional neural networks instead of recurrent neural networks when it comes to forecasting with very few features and less amount of historical data.

3.
Results Phys ; 24: 104137, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33898209

RESUMO

Though many countries have already launched COVID-19 mass vaccination programs to control the disease outbreak quickly, numerous countries around worldwide are grappling with unprecedented surges of new COVID-19 cases due to a more contagious and deadly variant of coronavirus. As the number of new cases is skyrocketing, pandemic fatigue and public apathy towards different intervention strategies pose new challenges to government officials to combat the pandemic. Henceforth, it is indispensable for the government officials to understand the future dynamics of COVID-19 flawlessly to develop strategic preparedness and resilient response planning. In light of the above circumstances, probable future outbreak scenarios in Brazil, Russia, and the United kingdom have been sketched in this study with the help of four deep learning models: long short term memory (LSTM), gated recurrent unit (GRU), convolutional neural network (CNN) and multivariate convolutional neural network (MCNN). In our analysis, the CNN algorithm has outperformed other deep learning models in terms of validation accuracy and forecasting consistency. It is unearthed in our study that CNN can provide robust long-term forecasting results in time-series analysis due to its capability of essential features learning, distortion invariance, and temporal dependence learning. However, the prediction accuracy of the LSTM algorithm has been found to be poor as it tries to discover seasonality and periodic intervals from any time-series dataset, which were absent in our studied countries. Our study has highlighted the promising validation of using convolutional neural networks instead of recurrent neural networks when forecasting with very few features and less amount of historical data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA