Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 232(2): 537-550, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34235742

RESUMO

Microclimatic effects (light, temperature) are often neglected in phenological studies and little information is known about the impact of resource availability (nutrient and water) on tree's phenological cycles. Here we experimentally studied spring and autumn phenology in four temperate trees in response to changes in bud albedo (white-painted vs black-painted buds), light conditions (nonshaded vs c. 70% shaded), water availability (irrigated, control and reduced precipitation) and nutrients (low vs high availability). We found that higher bud albedo or shade delayed budburst (up to +12 d), indicating that temperature is sensed locally within each bud. Leaf senescence was delayed by high nutrient availability (up to +7 d) and shade conditions (up to +39 d) in all species, except oak. Autumn phenological responses to summer droughts depended on species, with a delay for cherry (+7 d) and an advance for beech (-7 d). The strong phenological effects of bud albedo and light exposure reveal an important role of microclimatic variation on phenology. In addition to the temperature and photoperiod effects, our results suggest a tight interplay between source and sink processes in regulating the end of the seasonal vegetation cycle, which can be largely influenced by resource availability (light, water and nutrients).


Assuntos
Fagus , Árvores , Mudança Climática , Folhas de Planta , Estações do Ano , Plântula , Temperatura
2.
PLoS One ; 16(8): e0255962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34437578

RESUMO

Climate change and global warming have serious adverse impacts on tropical forests. In particular, climate change may induce changes in leaf phenology. However, in tropical dry forests where tree diversity is high, species responses to climate change differ. The objective of this research is to analyze the impact of climate variability on the leaf phenology in Thailand's tropical forests. Machine learning approaches were applied to model how leaf phenology in dry dipterocarp forest in Thailand responds to climate variability and El Niño. First, we used a Self-Organizing Map (SOM) to cluster mature leaf phenology at the species level. Then, leaf phenology patterns in each group along with litterfall phenology and climate data were analyzed according to their response time. After that, a Long Short-Term Memory neural network (LSTM) was used to create model to predict leaf phenology in dry dipterocarp forest. The SOM-based clustering was able to classify 92.24% of the individual trees. The result of mapping the clustering data with lag time analysis revealed that each cluster has a different lag time depending on the timing and amount of rainfall. Incorporating the time lags improved the performance of the litterfall prediction model, reducing the average root mean square percent error (RMSPE) from 14.35% to 12.06%. This study should help researchers understand how each species responds to climate change. The litterfall prediction model will be useful for managing dry dipterocarp forest especially with regards to forest fires.


Assuntos
Algoritmos , El Niño Oscilação Sul , Aprendizado de Máquina , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Estações do Ano , Árvores/fisiologia , Florestas , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA