Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(18): 3793-3809.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37562401

RESUMO

Hepatocytes, the major metabolic hub of the body, execute functions that are human-specific, altered in human disease, and currently thought to be regulated through endocrine and cell-autonomous mechanisms. Here, we show that key metabolic functions of human hepatocytes are controlled by non-parenchymal cells (NPCs) in their microenvironment. We developed mice bearing human hepatic tissue composed of human hepatocytes and NPCs, including human immune, endothelial, and stellate cells. Humanized livers reproduce human liver architecture, perform vital human-specific metabolic/homeostatic processes, and model human pathologies, including fibrosis and non-alcoholic fatty liver disease (NAFLD). Leveraging species mismatch and lipidomics, we demonstrate that human NPCs control metabolic functions of human hepatocytes in a paracrine manner. Mechanistically, we uncover a species-specific interaction whereby WNT2 secreted by sinusoidal endothelial cells controls cholesterol uptake and bile acid conjugation in hepatocytes through receptor FZD5. These results reveal the essential microenvironmental regulation of hepatic metabolism and its human-specific aspects.


Assuntos
Células Endoteliais , Fígado , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Células de Kupffer/metabolismo , Fígado/citologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fibrose/metabolismo
2.
Immunity ; 56(1): 125-142.e12, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630911

RESUMO

During metastasis, cancer cells invade, intravasate, enter the circulation, extravasate, and colonize target organs. Here, we examined the role of interleukin (IL)-22 in metastasis. Immune cell-derived IL-22 acts on epithelial tissues, promoting regeneration and healing upon tissue damage, but it is also associated with malignancy. Il22-deficient mice and mice treated with an IL-22 antibody were protected from colon-cancer-derived liver and lung metastasis formation, while overexpression of IL-22 promoted metastasis. Mechanistically, IL-22 acted on endothelial cells, promoting endothelial permeability and cancer cell transmigration via induction of endothelial aminopeptidase N. Multi-parameter flow cytometry and single-cell sequencing of immune cells isolated during cancer cell extravasation into the liver revealed iNKT17 cells as source of IL-22. iNKT-cell-deficient mice exhibited reduced metastases, which was reversed by injection of wild type, but not Il22-deficient, invariant natural killer T (iNKT) cells. IL-22-producing iNKT cells promoting metastasis were tissue resident, as demonstrated by parabiosis. Thus, IL-22 may present a therapeutic target for prevention of metastasis.


Assuntos
Interleucinas , Neoplasias Hepáticas , Células T Matadoras Naturais , Animais , Camundongos , Células Endoteliais/metabolismo , Interleucinas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/metabolismo , Neoplasias Colorretais/metabolismo , Interleucina 22
3.
Nature ; 627(8004): 628-635, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383790

RESUMO

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types1. Loss of IL-10 signalling results in life-threatening inflammatory bowel disease in humans and mice-however, the exact mechanism by which IL-10 signalling subdues inflammation remains unclear2-5. Here we find that increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10 deficiency. Accordingly, genetic deletion of ceramide synthase 2 (encoded by Cers2), the enzyme responsible for VLC ceramide production, limited the exacerbated inflammatory gene expression programme associated with IL-10 deficiency both in vitro and in vivo. The accumulation of saturated VLC ceramides was regulated by a decrease in metabolic flux through the de novo mono-unsaturated fatty acid synthesis pathway. Restoring mono-unsaturated fatty acid availability to cells deficient in IL-10 signalling limited saturated VLC ceramide production and the associated inflammation. Mechanistically, we find that persistent inflammation mediated by VLC ceramides is largely dependent on sustained activity of REL, an immuno-modulatory transcription factor. Together, these data indicate that an IL-10-driven fatty acid desaturation programme rewires VLC ceramide accumulation and aberrant activation of REL. These studies support the idea that fatty acid homeostasis in innate immune cells serves as a key regulatory node to control pathologic inflammation and suggests that 'metabolic correction' of VLC homeostasis could be an important strategy to normalize dysregulated inflammation caused by the absence of IL-10.


Assuntos
Inflamação , Interleucina-10 , Esfingolipídeos , Animais , Humanos , Camundongos , Ceramidas/química , Ceramidas/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/metabolismo , Homeostase , Imunidade Inata , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-10/metabolismo , Proteínas Proto-Oncogênicas c-rel , Esfingolipídeos/metabolismo
4.
Nature ; 606(7914): 585-593, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483404

RESUMO

Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA and a sustained interferon (IFN) response, all of which are recapitulated and required for pathology in the SARS-CoV-2-infected MISTRG6-hACE2 humanized mouse model of COVID-19, which has a human immune system1-20. Blocking either viral replication with remdesivir21-23 or the downstream IFN-stimulated cascade with anti-IFNAR2 antibodies in vivo in the chronic stages of disease attenuates the overactive immune inflammatory response, especially inflammatory macrophages. Here we show that SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release interleukin 1 (IL-1) and IL-18, and undergo pyroptosis, thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and the accompanying inflammatory response are necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Notably, this blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 through the production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.


Assuntos
COVID-19 , Inflamassomos , Macrófagos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19/patologia , COVID-19/fisiopatologia , COVID-19/virologia , Humanos , Inflamassomos/metabolismo , Interleucina-1 , Interleucina-18 , Pulmão/patologia , Pulmão/virologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia/metabolismo , Pneumonia/virologia , Piroptose , Receptores de IgG , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
5.
Nature ; 580(7804): 524-529, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322056

RESUMO

The initiation of an intestinal tumour is a probabilistic process that depends on the competition between mutant and normal epithelial stem cells in crypts1. Intestinal stem cells are closely associated with a diverse but poorly characterized network of mesenchymal cell types2,3. However, whether the physiological mesenchymal microenvironment of mutant stem cells affects tumour initiation remains unknown. Here we provide in vivo evidence that the mesenchymal niche controls tumour initiation in trans. By characterizing the heterogeneity of the intestinal mesenchyme using single-cell RNA-sequencing analysis, we identified a population of rare pericryptal Ptgs2-expressing fibroblasts that constitutively process arachidonic acid into highly labile prostaglandin E2 (PGE2). Specific ablation of Ptgs2 in fibroblasts was sufficient to prevent tumour initiation in two different models of sporadic, autochthonous tumorigenesis. Mechanistically, single-cell RNA-sequencing analyses of a mesenchymal niche model showed that fibroblast-derived PGE2 drives the expansion οf a population of Sca-1+ reserve-like stem cells. These express a strong regenerative/tumorigenic program, driven by the Hippo pathway effector Yap. In vivo, Yap is indispensable for Sca-1+ cell expansion and early tumour initiation and displays a nuclear localization in both mouse and human adenomas. Using organoid experiments, we identified a molecular mechanism whereby PGE2 promotes Yap dephosphorylation, nuclear translocation and transcriptional activity by signalling through the receptor Ptger4. Epithelial-specific ablation of Ptger4 misdirected the regenerative reprogramming of stem cells and prevented Sca-1+ cell expansion and sporadic tumour initiation in mutant mice, thereby demonstrating the robust paracrine control of tumour-initiating stem cells by PGE2-Ptger4. Analyses of patient-derived organoids established that PGE2-PTGER4 also regulates stem-cell function in humans. Our study demonstrates that initiation of colorectal cancer is orchestrated by the mesenchymal niche and reveals a mechanism by which rare pericryptal Ptgs2-expressing fibroblasts exert paracrine control over tumour-initiating stem cells via the druggable PGE2-Ptger4-Yap signalling axis.


Assuntos
Carcinogênese , Neoplasias Colorretais/patologia , Intestinos/patologia , Mesoderma/patologia , Células-Tronco Neoplásicas/patologia , Comunicação Parácrina , Nicho de Células-Tronco , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígenos Ly/metabolismo , Ácido Araquidônico/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Neoplasias Colorretais/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Proteínas de Membrana/metabolismo , Mesoderma/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Organoides/metabolismo , Organoides/patologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Análise de Célula Única , Proteínas de Sinalização YAP
6.
J Hepatol ; 80(1): 140-154, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37741346

RESUMO

Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.


Assuntos
Carcinoma Hepatocelular , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatias Alcoólicas/metabolismo , Carcinoma Hepatocelular/patologia , Fosfolipídeos/metabolismo , Neoplasias Hepáticas/patologia , Fígado/patologia
7.
FASEB J ; 36(6): e22364, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35593740

RESUMO

Congenital hepatic fibrosis (CHF), a genetic cholangiopathy characterized by fibropolycystic changes in the biliary tree, is caused by mutations in the PKHD1 gene, leading to defective fibrocystin (FPC), changes in planar cell polarity (PCP) and increased ß-catenin-dependent chemokine secretion. In this study, we aimed at understanding the role of Scribble (a protein involved in PCP), Yes-associated protein (YAP), and ß-catenin in the regulation of the fibroinflammatory phenotype of FPC-defective cholangiocytes. Immunohistochemistry showed that compared with wild type (WT) mice, in FPC-defective (Pkhd1del4/del4 ) mice nuclear expression of YAP/TAZ in cystic cholangiocytes, significantly increased and correlated with connective tissue growth factor (CTGF) expression and pericystic fibrosis, while Scribble expression on biliary cyst cells was markedly decreased. Cholangiocytes isolated from WT mice showed intense Scribble immunoreactivity at the membrane, but minimal nuclear expression of YAP, which conversely increased, together with CTGF, after small interfering RNA (siRNA) silencing of Scribble. In FPC-defective cholangiocytes, inhibition of YAP nuclear import reduced ß-catenin nuclear expression, and CTGF, integrin ß6, CXCL1, and CXCL10 mRNA levels, whereas inhibition of ß-catenin signaling did not affect nuclear translocation of YAP. Notably, siRNA silencing of Scribble and YAP in WT cholangiocytes mimics the fibroinflammatory changes of FPC-defective cholangiocytes. Conditional deletion of ß-catenin in Pkhd1del4/del4  mice reduced cyst growth, inflammation and fibrosis, without affecting YAP nuclear expression. In conclusion, the defective anchor of Scribble to the membrane facilitates the nuclear translocation of YAP and ß-catenin with gain of a fibroinflammatory phenotype. The Scribble/YAP/ß-catenin axis is a critical factor in the sequence of events linking the genetic defect to fibrocystic trait of cholangiocytes in CHF.


Assuntos
Cistos , beta Catenina , Animais , Modelos Animais de Doenças , Doenças Genéticas Inatas , Peptídeos e Proteínas de Sinalização Intracelular , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos , RNA Interferente Pequeno , Receptores de Superfície Celular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
8.
J Immunol ; 206(3): 607-620, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443087

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by exuberant deposition of extracellular matrix components, leading to the deterioration of lung architecture and respiratory functions. Profibrotic mechanisms are controlled by multiple regulatory molecules, including MAPKs, in turn regulated by multiple phosphorylation cascades. MAP3K8 is an MAPK kinase kinase suggested to pleiotropically regulate multiple pathogenic pathways in the context of inflammation and cancer; however, a possible role in the pathogenesis of IPF has not been investigated. In this report, MAP3K8 mRNA levels were found decreased in the lungs of IPF patients and of mice upon bleomycin-induced pulmonary fibrosis. Ubiquitous genetic deletion of Map3k8 in mice exacerbated the modeled disease, whereas bone marrow transfer experiments indicated that although MAP3K8 regulatory functions are active in both hematopoietic and nonhematopoietic cells, Map3k8 in hematopoietic cells has a more dominant role. Macrophage-specific deletion of Map3k8 was further found to be sufficient for disease exacerbation thus confirming a major role for macrophages in pulmonary fibrotic responses and suggesting a main role for Map3k8 in the homeostasis of their effector functions in the lung. Map3k8 deficiency was further shown to be associated with decreased Cox-2 expression, followed by a decrease in PGE2 production in the lung; accordingly, exogenous administration of PGE2 reduced inflammation and reversed the exacerbated fibrotic profile of Map3k8 -/- mice. Therefore, MAP3K8 has a central role in the regulation of inflammatory responses and Cox-2-mediated PGE2 production in the lung, and the attenuation of its expression is integral to pulmonary fibrosis development.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Inflamação/metabolismo , Pulmão/patologia , MAP Quinase Quinase Quinases/genética , Proteínas Proto-Oncogênicas/genética , Fibrose Pulmonar/metabolismo , Animais , Transplante de Medula Óssea , Células Cultivadas , Fibrose , Humanos , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176032

RESUMO

Autotaxin (ATX) or Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2) is a secreted enzyme with lysophospholipase D activity, with its primary function being the extracellular hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a bioactive lipid [...].


Assuntos
Neoplasias , Diester Fosfórico Hidrolases , Humanos , Lisofosfolipídeos , Desenvolvimento Embrionário
10.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977539

RESUMO

Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids, largely responsible for extracellular lysophosphatidic acid (LPA) production. LPA is a bioactive growth-factor-like lysophospholipid that exerts pleiotropic effects in almost all cell types, exerted through at least six G-protein-coupled receptors (LPAR1-6). Increased ATX expression has been detected in different chronic inflammatory diseases, while genetic or pharmacological studies have established ATX as a promising therapeutic target, exemplified by the ongoing phase III clinical trial for idiopathic pulmonary fibrosis. In this report, we employed an in silico drug discovery workflow, aiming at the identification of structurally novel series of ATX inhibitors that would be amenable to further optimization. Towards this end, a virtual screening protocol was applied involving the search into molecular databases for new small molecules potentially binding to ATX. The crystal structure of ATX in complex with a known inhibitor (HA-155) was used as a molecular model docking reference, yielding a priority list of 30 small molecule ATX inhibitors, validated by a well-established enzymatic assay of ATX activity. The two most potent, novel and structurally different compounds were further structurally optimized by deploying further in silico tools, resulting to the overall identification of six new ATX inhibitors that belong to distinct chemical classes than existing inhibitors, expanding the arsenal of chemical scaffolds and allowing further rational design.


Assuntos
Bases de Dados de Proteínas , Inibidores Enzimáticos/química , Diester Fosfórico Hidrolases/química , Bibliotecas de Moléculas Pequenas , Animais , Doença Crônica , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/enzimologia , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Relação Estrutura-Atividade
11.
J Autoimmun ; 104: 102327, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31471142

RESUMO

Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids including blood. ATX catalyzes the hydrolysis of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), a growth factor-like, signaling phospholipid. LPA exerts pleiotropic effects mediated by its G-protein-coupled receptors that are widely expressed and exhibit overlapping specificities. Although ATX also possesses matricellular properties, the majority of ATX reported functions in adulthood are thought to be mediated through the extracellular production of LPA. ATX-mediated LPA synthesis is likely localized at the cell surface through the possible interaction of ATX with integrins or other molecules, while LPA levels are further controlled by a group of membrane-associated lipid-phosphate phosphatases. ATX expression was shown to be necessary for embryonic development, and ATX deficient embryos exhibit defective vascular homeostasis and aberrant neuronal system development. In adult life, ATX is highly expressed in the adipose tissue and has been implicated in diet-induced obesity and glucose homeostasis with multiple implications in metabolic disorders. Additionally, LPA has been shown to affect multiple cell types, including stromal and immune cells in various ways. Therefore, LPA participates in many processes that are intricately involved in the pathogenesis of different chronic inflammatory diseases such as vascular homeostasis, skeletal and stromal remodeling, lymphocyte trafficking and immune regulation. Accordingly, increased ATX and LPA levels have been detected, locally and/or systemically, in patients with chronic inflammatory diseases, most notably idiopathic pulmonary fibrosis (IPF), chronic liver diseases, and rheumatoid arthritis. Genetic and pharmacological studies in mice have confirmed a pathogenetic role for ATX expression and LPA signaling in chronic inflammatory diseases, and provided the proof of principle for therapeutic interventions, as exemplified by the ongoing clinical trials for IPF.


Assuntos
Artrite Reumatoide , Fibrose Pulmonar Idiopática , Hepatopatias , Diester Fosfórico Hidrolases , Transdução de Sinais , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Doença Crônica , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/imunologia , Fibrose Pulmonar Idiopática/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Hepatopatias/genética , Hepatopatias/imunologia , Hepatopatias/patologia , Camundongos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
12.
Hepatology ; 67(5): 1903-1919, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29140564

RESUMO

Congenital hepatic fibrosis (CHF), a genetic disease caused by mutations in the polycystic kidney and hepatic disease 1 (PKHD1) gene, encoding for the protein fibrocystin/polyductin complex, is characterized by biliary dysgenesis, progressive portal fibrosis, and a protein kinase A-mediated activating phosphorylation of ß-catenin at Ser675. Biliary structures of Pkhd1del4/del4 mice, a mouse model of CHF, secrete chemokine (C-X-C motif) ligand 10 (CXCL10), a chemokine able to recruit macrophages. The aim of this study was to clarify whether CXCL10 plays a pathogenetic role in disease progression in CHF/Caroli disease and to understand the mechanisms leading to increased CXCL10 secretion. We demonstrate that treatment of Pkhd1del4/del4 mice for 3 months with AMG-487, an inhibitor of CXC chemokine receptor family 3, the cognate receptor of CXCL10, reduces the peribiliary recruitment of alternative activated macrophages (cluster of differentiation 45+ F4/80+ cells), spleen size, liver fibrosis (sirius red), and cyst growth (cytokeratin 19-positive area), consistent with a pathogenetic role of CXCL10. Furthermore, we show that in fibrocystin/polyductin complex-defective cholangiocytes, isolated from Pkhd1del4/del4 mice, CXCL10 production is mediated by Janus kinase/signal transducer and activator of transcription 3 in response to interleukin 1beta (IL-1ß) and ß-catenin. Specifically, IL-1ß promotes signal transducer and activator of transcription 3 phosphorylation, whereas ß-catenin promotes its nuclear translocation. Increased pro-IL-1ß was regulated by nuclear factor kappa-light-chain-enhancer of activated B cells, and increased secretion of active IL-1ß was mediated by the activation of Nod-like receptors, pyrin domain containing 3 inflammasome (increased expression of caspase 1 and Nod-like receptors, pyrin domain containing 3). CONCLUSION: In fibrocystin/polyductin complex-defective cholangiocytes, ß-catenin and IL-1ß are responsible for signal transducer and activator of transcription 3-dependent secretion of CXCL10; in vivo experiments show that the CXCL10/CXC chemokine receptor family 3 axis prevents the recruitment of macrophages, reduces inflammation, and halts the progression of the disease; the increased production of IL-1ß highlights the autoinflammatory nature of CHF and may open novel therapeutic avenues. (Hepatology 2018;67:1903-1919).


Assuntos
Quimiocina CXCL10/metabolismo , Doenças Genéticas Inatas/metabolismo , Interleucina-1beta/metabolismo , Cirrose Hepática/metabolismo , beta Catenina/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais/metabolismo , Citometria de Fluxo , Imuno-Histoquímica , Fígado/metabolismo , Fígado/patologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR3/metabolismo , Transdução de Sinais
13.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt B): 1374-1379, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28754453

RESUMO

The most studied physiological function of biliary epithelial cells (cholangiocytes) is to regulate bile flow and composition, in particular the hydration and alkalinity of the primary bile secreted by hepatocytes. After almost three decades of studies it is now become clear that cholangiocytes are also involved in epithelial innate immunity, in inflammation, and in the reparative processes in response to liver damage. An increasing number of evidence highlights the ability of cholangiocyte to undergo changes in phenotype and function in response to liver damage. By participating actively to the immune and inflammatory responses, cholangiocytes represent a first defense line against liver injury from different causes. Indeed, cholangiocytes express a number of receptors able to recognize pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), such as Toll-like receptors (TLR), which modulate their pro-inflammatory behavior. Cholangiocytes can be both the targets and the initiators of the inflammatory process. Derangements of the signals controlling these mechanisms are at the basis of the pathogenesis of different cholangiopathies, both hereditary and acquired, such as cystic fibrosis-related liver disease and sclerosing cholangitis. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.


Assuntos
Ductos Biliares/imunologia , Colangite Esclerosante/imunologia , Colestase/imunologia , Células Epiteliais/imunologia , Imunidade Inata , Hepatopatias/imunologia , Animais , Ductos Biliares/citologia , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Colangite Esclerosante/genética , Colangite Esclerosante/patologia , Colestase/genética , Colestase/patologia , Fibrose Cística/genética , Fibrose Cística/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Fígado/imunologia , Fígado/patologia , Hepatopatias/genética , Hepatopatias/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo
14.
Hepatology ; 65(4): 1369-1383, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27981605

RESUMO

Autotaxin (ATX) is a secreted lysophospholipase D that catalyzes the production of lysophosphatidic acid (LPA), a pleiotropic growth-factor-like lysophospholipid. Increased ATX expression has been detected in various chronic inflammatory disorders and different types of cancer; however, little is known about its role and mode of action in liver fibrosis and cancer. Here, increased ATX expression was detected in chronic liver disease (CLD) patients of different etiologies, associated with shorter overall survival. In mice, different hepatotoxic stimuli linked with the development of different forms of CLDs were shown to stimulate hepatocyte ATX expression, leading to increased LPA levels, activation of hepatic stellate cells (HSCs), and amplification of profibrotic signals. Hepatocyte-specific, conditional genetic deletion and/or transgenic overexpression of ATX established a liver profibrotic role for ATX/LPA, whereas pharmacological ATX inhibition studies suggested ATX as a possible therapeutic target in CLDs. In addition, hepatocyte ATX ablation and the consequent deregulation of lipid homeostasis was also shown to attenuate hepatocellular carcinoma (HCC) development, thus implicating ATX/LPA in the causative link of cirrhosis and HCC. CONCLUSION: ATX is a novel player in the pathogenesis of liver fibrosis and cancer and a promising therapeutic target. (Hepatology 2017;65:1369-1383).


Assuntos
Benzoxazóis/farmacologia , Carcinoma Hepatocelular/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Diester Fosfórico Hidrolases/genética , Piperazinas/farmacologia , Animais , Biópsia por Agulha , Carcinoma Hepatocelular/genética , Estudos de Casos e Controles , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Progressão da Doença , Deleção de Genes , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Diester Fosfórico Hidrolases/efeitos dos fármacos
15.
Pulm Pharmacol Ther ; 52: 32-40, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201409

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing lung disease with a dismal prognosis and a largely unknown etiology. Autotaxin (ATX) is a secreted lysophospholipase D, largely responsible for extracellular production of lysophosphatidic acid (LPA), a bioactive phospholipid. LPA has numerous effects in most cell types, signaling through at least 6 receptors (LPAR) exhibiting wide spread distribution and overlapping specificities. The ATX/LPA axis has been suggested as a therapeutic target in different chronic inflammatory and fibroproliferative disorders, including pulmonary fibrosis. In this report, we examined head-to-head the efficacy of a potent inhibitor of ATX (PF-8380), that has not been tested in pulmonary fibrosis models, and an antagonist of LPAR1 (AM095) in bleomycin (BLM)-induced pulmonary fibrosis. Both compounds abrogated the development of pulmonary fibrosis and prevented the distortion of lung architecture, exhibiting qualitative and quantitative differences in different manifestations of the modeled disease.


Assuntos
Benzoxazóis/farmacologia , Compostos de Bifenilo/farmacologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Isoxazóis/farmacologia , Lisofosfolipídeos/antagonistas & inibidores , Diester Fosfórico Hidrolases/metabolismo , Piperazinas/farmacologia , Animais , Benzoxazóis/farmacocinética , Compostos de Bifenilo/farmacocinética , Bleomicina/toxicidade , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Isoxazóis/farmacocinética , Estimativa de Kaplan-Meier , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Fosfodiesterase/farmacocinética , Inibidores de Fosfodiesterase/farmacologia , Piperazinas/farmacocinética , Distribuição Aleatória
16.
Proc Natl Acad Sci U S A ; 111(43): E4658-67, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25316791

RESUMO

Tumor progression locus-2 (Tpl2) kinase is a major inflammatory mediator in immune cell types recently found to be genetically associated with inflammatory bowel diseases (IBDs). Here we show that Tpl2 may exert a dominant homeostatic rather than inflammatory function in the intestine mediated specifically by subepithelial intestinal myofibroblasts (IMFs). Mice with complete or IMF-specific Tpl2 ablation are highly susceptible to epithelial injury-induced colitis showing impaired compensatory proliferation in crypts and extensive ulcerations without significant changes in inflammatory responses. Following epithelial injury, IMFs sense innate or inflammatory signals and activate, via Tpl2, the cyclooxygenase-2 (Cox-2)-prostaglandin E2 (PGE2) pathway, which we show here to be essential for the epithelial homeostatic response. Exogenous PGE2 administration rescues mice with complete or IMF-specific Tpl2 ablation from defects in crypt function and susceptibility to colitis. We also show that Tpl2 expression is decreased in IMFs isolated from the inflamed ileum of IBD patients indicating that Tpl2 function in IMFs may be highly relevant to human disease. The IMF-mediated mechanism we propose also involves the IBD-associated genes IL1R1, MAPK1, and the PGE2 receptor-encoding PTGER4. Our results establish a previously unidentified myofibroblast-specific innate pathway that regulates intestinal homeostasis and may underlie IBD susceptibility in humans.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Epitélio/metabolismo , Homeostase , Intestinos/patologia , MAP Quinase Quinase Quinases/metabolismo , Miofibroblastos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Linhagem da Célula , Proliferação de Células/efeitos dos fármacos , Colite/enzimologia , Colite/imunologia , Colite/patologia , Sulfato de Dextrana , Dinoprostona/administração & dosagem , Dinoprostona/farmacologia , Suscetibilidade a Doenças , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Epitélio/patologia , Homeostase/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação/patologia , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/patologia , MAP Quinase Quinase Quinases/deficiência , Camundongos Endogâmicos C57BL , Modelos Biológicos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/enzimologia , Miofibroblastos/patologia , Fenótipo , Proteínas Proto-Oncogênicas/deficiência , Transdução de Sinais/efeitos dos fármacos
17.
Biochim Biophys Acta ; 1831(1): 42-60, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22867755

RESUMO

Lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), the most prominent lysoglycerophospholipids, are emerging as a novel class of inflammatory lipids, joining thromboxanes, leukotrienes and prostaglandins with which they share metabolic pathways and regulatory mechanisms. Enzymes that participate in LPC and LPA metabolism, such as the phospholipase A(2) superfamily (PLA(2)) and autotaxin (ATX, ENPP2), play central roles in regulating LPC and LPA levels and consequently their actions. LPC/LPA biosynthetic pathways will be briefly presented and LPC/LPA signaling properties and their possible functions in the regulation of the immune system and chronic inflammation will be reviewed. Furthermore, implications of exacerbated LPC and/or LPA signaling in the context of chronic inflammatory diseases, namely rheumatoid arthritis, multiple sclerosis, pulmonary fibrosis and hepatitis, will be discussed. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.


Assuntos
Inflamação/enzimologia , Lisofosfatidilcolinas/metabolismo , Lisofosfolipídeos/metabolismo , Fosfolipases A2/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Animais , Doença Crônica , Humanos , Inflamação/patologia , Transdução de Sinais
18.
Am J Respir Crit Care Med ; 188(8): 928-40, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24050723

RESUMO

RATIONALE: Bioactive lipid mediators, derived from membrane lipid precursors, are released into the airway and airspace where they bind high-affinity cognate receptors and may mediate asthma pathogenesis. Lysophosphatidic acid (LPA), a bioactive lipid mediator generated by the enzymatic activity of extracellular autotaxin (ATX), binds LPA receptors, resulting in an array of biological actions on cell proliferation, migration, survival, differentiation, and motility, and therefore could mediate asthma pathogenesis. OBJECTIVES: To define a role for the ATX-LPA pathway in human asthma pathogenesis and a murine model of allergic lung inflammation. METHODS: We investigated the profiles of LPA molecular species and the level of ATX exoenzyme in bronchoalveolar lavage fluids of human patients with asthma subjected to subsegmental bronchoprovocation with allergen. We interrogated the role of the ATX-LPA pathway in allergic lung inflammation using a murine allergic asthma model in ATX-LPA pathway-specific genetically modified mice. MEASUREMENTS AND MAIN RESULTS: Subsegmental bronchoprovocation with allergen in patients with mild asthma resulted in a remarkable increase in bronchoalveolar lavage fluid levels of LPA enriched in polyunsaturated 22:5 and 22:6 fatty acids in association with increased concentrations of ATX protein. Using a triple-allergen mouse asthma model, we showed that ATX-overexpressing transgenic mice had a more severe asthmatic phenotype, whereas blocking ATX activity and knockdown of the LPA2 receptor in mice produced a marked attenuation of Th2 cytokines and allergic lung inflammation. CONCLUSIONS: The ATX-LPA pathway plays a critical role in the pathogenesis of asthma. These preclinical data indicate that targeting the ATX-LPA pathway could be an effective antiasthma treatment strategy.


Assuntos
Asma/fisiopatologia , Inflamação/fisiopatologia , Lisofosfolipídeos/fisiologia , Diester Fosfórico Hidrolases/fisiologia , Alérgenos/farmacologia , Animais , Asma/induzido quimicamente , Asma/etiologia , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Humanos , Inflamação/etiologia , Masculino , Camundongos , Camundongos Transgênicos , Diester Fosfórico Hidrolases/análise , Transdução de Sinais/fisiologia
19.
Nat Aging ; 3(7): 813-828, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277640

RESUMO

Regulatory T (Treg) cells modulate several aging-related liver diseases. However, the molecular mechanisms regulating Treg function in this context are unknown. Here we identified a long noncoding RNA, Altre (aging liver Treg-expressed non-protein-coding RNA), which was specifically expressed in the nucleus of Treg cells and increased with aging. Treg-specific deletion of Altre did not affect Treg homeostasis and function in young mice but caused Treg metabolic dysfunction, inflammatory liver microenvironment, liver fibrosis and liver cancer in aged mice. Depletion of Altre reduced Treg mitochondrial integrity and respiratory capacity, and induced reactive oxygen species accumulation, thus increasing intrahepatic Treg apoptosis in aged mice. Moreover, lipidomic analysis identified a specific lipid species driving Treg aging and apoptosis in the aging liver microenvironment. Mechanistically, Altre interacts with Yin Yang 1 to orchestrate its occupation on chromatin, thereby regulating the expression of a group of mitochondrial genes, and maintaining optimal mitochondrial function and Treg fitness in the liver of aged mice. In conclusion, the Treg-specific nuclear long noncoding RNA Altre maintains the immune-metabolic homeostasis of the aged liver through Yin Yang 1-regulated optimal mitochondrial function and the Treg-sustained liver immune microenvironment. Thus, Altre is a potential therapeutic target for the treatment of liver diseases affecting older adults.


Assuntos
Hepatopatias , RNA Longo não Codificante , Animais , Camundongos , Envelhecimento/genética , Homeostase/genética , Hepatopatias/metabolismo , RNA Longo não Codificante/genética , Linfócitos T Reguladores
20.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214856

RESUMO

Unchecked chronic inflammation is the underlying cause of many diseases, ranging from inflammatory bowel disease to obesity and neurodegeneration. Given the deleterious nature of unregulated inflammation, it is not surprising that cells have acquired a diverse arsenal of tactics to limit inflammation. IL-10 is a key anti-inflammatory cytokine that can limit immune cell activation and cytokine production in innate immune cell types; however, the exact mechanism by which IL-10 signaling subdues inflammation remains unclear. Here, we find that IL-10 signaling constrains sphingolipid metabolism. Specifically, we find increased saturated very long chain (VLC) ceramides are critical for the heightened inflammatory gene expression that is a hallmark of IL-10-deficient macrophages. Genetic deletion of CerS2, the enzyme responsible for VLC ceramide production, limited exacerbated inflammatory gene expression associated with IL-10 deficiency both in vitro and in vivo , indicating that "metabolic correction" is able to reduce inflammation in the absence of IL-10. Surprisingly, accumulation of saturated VLC ceramides was regulated by flux through the de novo mono-unsaturated fatty acid (MUFA) synthesis pathway, where addition of exogenous MUFAs could limit both saturated VLC ceramide production and inflammatory gene expression in the absence of IL-10 signaling. Together, these studies mechanistically define how IL-10 signaling manipulates fatty acid metabolism as part of its molecular anti-inflammatory strategy and could lead to novel and inexpensive approaches to regulate aberrant inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA