Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Immunol ; 207(12): 3098-3106, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34799426

RESUMO

Rodent mast cells are classified into two major subsets, mucosal mast cells (MMCs) and connective tissue mast cells. MMCs arise from mast cell progenitors that are mobilized from the bone marrow to mucosal tissues in response to allergic inflammation or helminth infection. TGF-ß is known as an inducer of MMC differentiation in mucosal tissues, but we have previously found that Notch receptor-mediated signaling also leads to the differentiation. Here, we examined the relationship between Notch and TGF-ß signaling in MMC differentiation using mouse bone marrow-derived mast cells (BMMCs). We found that the coexistence of Notch and TGF-ß signaling markedly upregulates the expression of MMC markers, mouse mast cell protease (mMCP)-1, mMCP-2, and αE integrin/CD103, more than Notch or TGF-ß signaling alone, and that their signals act interdependently to induce these marker expressions. Notch and TGF-ß-mediated transcription of MMC marker genes were both dependent on the TGF-ß signaling transducer SMAD4. In addition, we also found that Notch signaling markedly upregulated mMCP-1 and mMCP-2 expression levels through epigenetic deregulation of the promoter regions of these genes, but did not affect the promoter of the CD103-encoding gene. Moreover, forced expression of the constitutively active Notch2 intracellular domain in BMMCs showed that Notch signaling promotes the nuclear localization of SMADs 3 and 4 and causes SMAD4-dependent gene transcription. These findings indicate that Notch and TGF-ß signaling play interdependent roles in inducing the differentiation and maturation of MMCs. These roles may contribute to the rapid expansion of the number of MMCs during allergic mucosal inflammation.


Assuntos
Mastócitos , Fator de Crescimento Transformador beta , Animais , Expressão Gênica , Inflamação/metabolismo , Mastócitos/metabolismo , Camundongos , Mucosa , Fator de Crescimento Transformador beta/metabolismo
2.
J Allergy Clin Immunol ; 147(3): 1063-1076.e9, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32717254

RESUMO

BACKGROUND: Oral immunotherapy (OIT) aims to establish desensitization and sustained unresponsiveness (SU) in patients with food allergy by ingestion of gradually increasing doses of specific food allergens. However, little is known about the mechanisms by which OIT induces SU to specific allergens. OBJECTIVES: We investigated the role of Notch signaling, which controls cell fate decisions in many types of immune cells in the induction of SU by OIT treatment. METHODS: Two types of mouse models, ovalbumin-induced food allergy and OIT, were generated. To elucidate the role of Notch signaling in OIT-induced SU, mice were intraperitoneally injected with the Notch signaling inhibitor N-[(3,5-difluorophenyl)acetyl]-l-alanyl-2-phenylglycine-1,1-dimethylethyl ester during the OIT treatment period. RESULTS: Ovalbumin-sensitized mice were desensitized and also had SU induced by OIT treatment, whereas repeated challenges with ovalbumin caused the development of severe allergic reactions in ovalbumin-sensitized mice. Administration of N-[(3,5-difluorophenyl)acetyl]-l-alanyl-2-phenylglycine-1,1-dimethylethyl ester to mice during the OIT treatment period inhibited the establishment of SU to ovalbumin but did not affect the induction of desensitization. OIT induced a systemic expansion of IL-10-producing CD4+ T cells, including TH2 cells, and myeloid-derived suppressor cells (MDSCs), particularly the monocytic MDSC subpopulation. Inhibition of Notch signaling prevented the OIT-induced expansion of those cells. In vitro cultures of bone marrow cells showed that Notch signaling directly promoted the generation of monocytic MDSCs. In addition, the contribution of MDSCs to OIT-induced SU was confirmed by MDSC depletion with the anti-Gr1 antibody. CONCLUSION: Notch signaling contributes to the establishment of SU induced by OIT through systemic expansion of immunosuppressive cells, such as IL-10-producing CD4+ T cells and MDSCs.


Assuntos
Dessensibilização Imunológica/métodos , Hipersensibilidade Alimentar/imunologia , Células Supressoras Mieloides/imunologia , Receptores Notch/metabolismo , Células Th2/imunologia , Administração Oral , Alérgenos/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hipersensibilidade Alimentar/terapia , Humanos , Tolerância Imunológica , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Transdução de Sinais
3.
Immunity ; 37(5): 827-39, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23123064

RESUMO

Mast cells (MCs) are key effector cells in allergic reactions. However, the inhibitory mechanism that prevents excessive activation of MCs remains elusive. Here we show that leukocyte mono-immunoglobulin-like receptor 3 (LMIR3; also called CD300f) is a negative regulator of MC activation in vivo. LMIR3 deficiency exacerbated MC-dependent allergic responses in mice, including anaphylaxis, airway inflammation, and dermatitis. Both physical binding and functional reporter assays via an extracellular domain of LMIR3 showed that several extracellular lipids (including ceramide) and lipoproteins were possible ligands for LMIR3. Importantly, MCs were frequently surrounded by extracellular ceramide in vivo. Upon engagement of high-affinity immunoglobulin E receptor, extracellular ceramide-LMIR3 binding inhibited MC activation via immunoreceptor tyrosine-based inhibitory and switch motifs of LMIR3. Moreover, pretreatment with LMIR3-Fc fusion protein or antibody against either ceramide or LMIR3 interfered with this binding in vivo, thereby exacerbating passive cutaneous anaphylaxis. Thus, the interaction between extracellular ceramide and LMIR3 suppressed MC-dependent allergic responses.


Assuntos
Ceramidas/imunologia , Ceramidas/metabolismo , Hipersensibilidade/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Anafilaxia/imunologia , Anafilaxia/metabolismo , Animais , Células Cultivadas , Dermatite/imunologia , Dermatite/metabolismo , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Lipoproteínas/imunologia , Lipoproteínas/metabolismo , Mastócitos/patologia , Camundongos , Ligação Proteica/imunologia , Estrutura Terciária de Proteína , Receptores de IgE/imunologia , Receptores de IgE/metabolismo , Tirosina/imunologia , Tirosina/metabolismo
4.
J Biol Chem ; 293(10): 3793-3805, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29358324

RESUMO

CD300 molecules (CD300s) belong to paired activating and inhibitory receptor families, which mediate immune responses. Human CD300e (hCD300e) is expressed in monocytes and myeloid dendritic cells and transmits an immune-activating signal by interacting with DNAX-activating protein 12 (DAP12). However, the CD300e ortholog in mice (mCD300e) is poorly characterized. Here, we found that mCD300e is also an immune-activating receptor. We found that mCD300e engagement triggers cytokine production in mCD300e-transduced bone marrow-derived mast cells (BMMCs). Loss of DAP12 and another signaling protein, FcRγ, did not affect surface expression of transduced mCD300e, but abrogated mCD300e-mediated cytokine production in the BMMCs. Co-immunoprecipitation experiments revealed that mCD300e physically interacts with both FcRγ and DAP12, suggesting that mCD300e delivers an activating signal via these two proteins. Binding and reporter assays with the mCD300e extracellular domain identified sphingomyelin as a ligand of both mCD300e and hCD300e. Notably, the binding of sphingomyelin to mCD300e stimulated cytokine production in the transduced BMMCs in an FcRγ- and DAP12-dependent manner. Flow cytometric analysis with an mCD300e-specific Ab disclosed that mCD300e expression is highly restricted to CD115+Ly-6Clow/int peripheral blood monocytes, corresponding to CD14dim/+CD16+ human nonclassical and intermediate monocytes. Loss of FcRγ or DAP12 lowered the surface expression of endogenous mCD300e in the CD115+Ly-6Clow/int monocytes. Stimulation with sphingomyelin failed to activate the CD115+Ly-6Clow/int mouse monocytes, but induced hCD300e-mediated cytokine production in the CD14dimCD16+ human monocytes. Taken together, these observations indicate that mCD300e recognizes sphingomyelin and thereby regulates nonclassical and intermediate monocyte functions through FcRγ and DAP12.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mastócitos/metabolismo , Monócitos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de IgG/metabolismo , Receptores Imunológicos/agonistas , Esfingomielinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Citocinas/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ligantes , Mastócitos/citologia , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Monócitos/imunologia , Mutação , Fragmentos de Peptídeos/agonistas , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores de IgG/química , Receptores de IgG/genética , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
5.
J Biol Chem ; 292(7): 2924-2932, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28073916

RESUMO

LPS triggers inflammatory responses; however, the negative regulation of LPS responses in vivo remains poorly understood. CD300f is an inhibitory receptor among the CD300 family of paired activating and inhibitory receptors. We have previously identified ceramide as a ligand for CD300f and shown that the binding of ceramide to CD300f inhibits IgE-mediated mast cell activation and allergic responses in mouse models. Here we identify the critical role of CD300f in inhibiting LPS-induced skin inflammation. CD300f deficiency remarkably enhanced LPS-induced skin edema and neutrophil recruitment in mice. Higher levels of factors that increase vascular permeability and of factors that induce neutrophil recruitment were detected in LPS-injected skin pouch exudates of CD300f-/- mice as compared with wild-type mice. CD300f was highly expressed in mast cells and recruited neutrophils, but not in macrophages, among skin myeloid cells. CD300f deficiency failed to influence the intrinsic migratory ability of neutrophils. Ceramide-CD300f binding suppressed the release of chemical mediators from mast cells and from neutrophils in response to LPS. Adoptive transfer experiments indicated that mast cells mediated enhanced edema in LPS-stimulated skin of CD300f-/- mice, whereas mast cells together with recruited neutrophils mediated robust neutrophil accumulation. Importantly, administering a ceramide antibody or ceramide-containing vesicles enhanced or suppressed LPS-induced skin inflammation of wild-type mice, respectively. Thus, ceramide-CD300f binding inhibits LPS-induced skin inflammation, implicating CD300f as a negative regulator of Toll-like receptor 4 (TLR4) signaling in vivo.


Assuntos
Ceramidas/metabolismo , Dermatite/prevenção & controle , Lipopolissacarídeos/toxicidade , Receptores Imunológicos/metabolismo , Animais , Quimiotaxia de Leucócito , Dermatite/imunologia , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Receptores Imunológicos/genética
7.
Gut ; 65(5): 777-87, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25673319

RESUMO

OBJECTIVE: Extracellular ATP mediates mast cell-dependent intestinal inflammation via P2X7 purinoceptors. We have previously shown that CD300f (also called the leucocyte mono-immunoglobulin-like receptor 3 (LMIR3)) suppresses immunoglobulin E-dependent and mast cell-dependent allergic responses by binding to ceramide. The aim of the present study was to clarify the role of ceramide-LMIR3 interaction in the development of IBD. DESIGN: The dextran sodium sulfate (DSS)-induced colitis model was used in wild-type (WT), LMIR3(-/-), mast cell-deficient Kit(W-sh/W-sh), Kit(W-sh/W-sh)LMIR3(-/-) or Kit(W-sh/W-sh) mice engrafted with WT or LMIR3(-/-) bone marrow-derived mast cells (BMMCs). The severity of colitis was determined by clinical and histological criteria. Lamina propria cell populations were assessed by flow cytometry. Production of chemical mediators from lamina propria cells was measured by real-time reverse transcription PCR. Production of chemical mediators from ATP-stimulated BMMCs in the presence or absence of ceramide was measured by ELISA. The severity of DSS-induced colitis was assessed in mice given either an Fc fusion protein containing an extracellular domain of LMIR3, and anticeramide antibody, or ceramide liposomes. RESULTS: LMIR3 deficiency exacerbated DSS-induced colitis in mice. Kit(W-sh/W-sh) mice harbouring LMIR3(-/-) mast cells exhibited more severe colitis than those harbouring WT mast cells. Ceramide-LMIR3 interaction inhibited ATP-stimulated activation of BMMCs. DSS-induced colitis was aggravated by disrupting the ceramide-LMIR3 interaction, whereas it was suppressed by treating with ceramide liposomes. CONCLUSIONS: LMIR3-deficient colonic mast cells were pivotal in the exacerbation of DSS-induced colitis in LMIR3(-/-) mice. Ceramide liposomes attenuated DSS-induced colitis by inhibiting ATP-mediated activation of colonic mast cells through ceraimide-LMIR3 binding.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Ceramidas/fisiologia , Colite/prevenção & controle , Mastócitos/fisiologia , Receptores Imunológicos/fisiologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
10.
J Biol Chem ; 288(11): 7662-7675, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23372157

RESUMO

CD300C is highly homologous with an inhibitory receptor CD300A in an immunoglobulin-like domain among the human CD300 family of paired immune receptors. To clarify the precise expression and function of CD300C, we generated antibodies discriminating between CD300A and CD300C, which recognized a unique epitope involving amino acid residues CD300A(F56-L57) and CD300C(L63-R64). Notably, CD300C was highly expressed in human monocytes and mast cells. Cross-linking of CD300C by its specific antibody caused cytokine/chemokine production of human monocytes and mast cells. Fc receptor γ was indispensable for both efficient surface expression and activating functions of CD300C. To identify a ligand for CD300A or CD300C, we used reporter cell lines expressing a chimera receptor harboring extracellular CD300A or CD300C and intracellular CD3ζ, in which its unknown ligand induced GFP expression. Our results indicated that phosphatidylethanolamine (PE) among the lipids tested and apoptotic cells were possible ligands for both CD300C and CD300A. PE and apoptotic cells more strongly induced GFP expression in the reporter cells through binding to extracellular CD300A as compared with CD300C. Differential recognition of PE by extracellular CD300A and CD300C depended on different amino acid residues CD300A(F56-L57) and CD300C(L63-R64). Interestingly, GFP expression induced by extracellular CD300C-PE binding in the reporter cells was dampened by co-expression of full-length CD300A, indicating the predominance of CD300A over CD300C in PE recognition/signaling. PE consistently failed to stimulate cytokine production in monocytes expressing CD300C with CD300A. In conclusion, specific engagement of CD300C led to Fc receptor γ-dependent activation of mast cells and monocytes.


Assuntos
Antígenos de Superfície/fisiologia , Regulação da Expressão Gênica , Mastócitos/metabolismo , Glicoproteínas de Membrana/fisiologia , Monócitos/metabolismo , Receptores de IgG/metabolismo , Animais , Antígenos de Superfície/metabolismo , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Células HL-60 , Humanos , Sistema Imunitário , Células Jurkat , Células K562 , Ligantes , Mastócitos/citologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Células NIH 3T3 , Fagocitose , Ratos , Transdução de Sinais , Relação Estrutura-Atividade , Células U937
11.
J Immunol ; 189(4): 1773-9, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22772446

RESUMO

Leukocyte mono-Ig-like receptor 5 (LMIR5, also called CD300b) is an activating receptor expressed in myeloid cells. We have previously demonstrated that T cell Ig mucin 1 works as a ligand for LMIR5 in mouse ischemia/reperfusion injury of the kidneys. In this article, we show that LMIR5 is implicated in LPS-induced sepsis in mice. Notably, neutrophils constitutively released a soluble form of LMIR5 (sLMIR5) through proteolytic cleavage of surface LMIR5. Stimulation with TLR agonists augmented the release of sLMIR5. LPS administration or peritonitis induction increased serum levels of sLMIR5 in mice, which was substantially inhibited by neutrophil depletion. Thus, neutrophils were the main source of LPS-induced sLMIR5 in vivo. On the other hand, i.p. administration of LMIR5-Fc, a surrogate of sLMIR5, bound to resident macrophages (M) and stimulated transient inflammation in mice. Consistently, LMIR5-Fc induced in vitro cytokine production of peritoneal M via its unknown ligand. Interestingly, LMIR5 deficiency profoundly reduced systemic cytokine production and septic mortality in LPS-administered mice, although it did not affect in vitro cytokine production of LPS-stimulated peritoneal M. Importantly, the resistance of LMIR5-deficient mice to LPS- or peritonitis-induced septic death was decreased by LMIR5-Fc administration, implicating sLMIR5 in LPS responses in vivo. Collectively, neutrophil-derived sLMIR5 amplifies LPS-induced lethal inflammation.


Assuntos
Neutrófilos/imunologia , Receptores Imunológicos/imunologia , Sepse/imunologia , Animais , Western Blotting , Citocinas/biossíntese , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Inflamação/induzido quimicamente , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptores Imunológicos/genética , Sepse/induzido quimicamente , Solubilidade , Transfecção
12.
Sci Rep ; 14(1): 8398, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600251

RESUMO

Allergic rhinitis (AR) is caused by type I hypersensitivity reaction in the nasal tissues. The interaction between CD300f and its ligand ceramide suppresses immunoglobulin E (IgE)-mediated mast cell activation. However, whether CD300f inhibits the development of allergic rhinitis (AR) remains elusive. We aimed to investigate the roles of CD300f in the development of AR and the effectiveness of intranasal administration of ceramide liposomes on AR in murine models. We used ragweed pollen-induced AR models in mice. Notably, CD300f deficiency did not significantly influence the ragweed-specific IgE production, but increased the frequency of mast cell-dependent sneezing as well as the numbers of degranulated mast cells and eosinophils in the nasal tissues in our models. Similar results were also obtained for MCPT5-exprssing mast cell-specific loss of CD300f. Importantly, intranasal administration of ceramide liposomes reduced the frequency of sneezing as well as the numbers of degranulated mast cells and eosinophils in the nasal tissues in AR models. Thus, CD300f-ceramide interaction, predominantly in mast cells, alleviates the symptoms and progression of AR. Therefore, intranasal administration of ceramide liposomes may be a promising therapeutic approach against AR by targeting CD300f.


Assuntos
Lipossomos , Rinite Alérgica , Animais , Camundongos , Administração Intranasal , Espirro , Ceramidas , Modelos Animais de Doenças , Rinite Alérgica/tratamento farmacológico , Imunoglobulina E , Mucosa Nasal , Camundongos Endogâmicos BALB C , Ovalbumina
13.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37819721

RESUMO

The penetration of allergens through the epithelial layer is the initial step in the development of allergic conjunctivitis. Although pollinosis patients manifest symptoms within minutes after pollen exposure, the mechanisms of the rapid transport of the allergens remain unclear. In the present study, we found that the instillation of pollen shells rapidly induces a large number of goblet cell-associated antigen passages (GAPs) in the conjunctiva. Antigen acquisition by stromal cells, including macrophages and CD11b+ dendritic cells, correlated with surface GAP formation. Furthermore, a substantial amount of antigen was transported to the stroma during the first 10 minutes of pollen exposure, which was sufficient for the full induction of an allergic conjunctivitis mouse model. This inducible, rapid GAP formation and antigen acquisition were suppressed by topical lidocaine or trigeminal nerve ablation, indicating that the sensory nervous system plays an essential role. Interestingly, pollen shell-stimulated GAP formation was not suppressed by topical atropine, suggesting that the conjunctival GAPs and intestinal GAPs are differentially regulated. These results identify pollen shell-induced GAP as a therapeutic target for allergic conjunctivitis.


Assuntos
Conjuntivite Alérgica , Animais , Camundongos , Humanos , Conjuntivite Alérgica/diagnóstico , Conjuntivite Alérgica/tratamento farmacológico , Células Caliciformes , Alérgenos , Pólen , Túnica Conjuntiva
14.
Front Immunol ; 14: 1173069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275864

RESUMO

Background: Patients with food allergy often suffer from atopic dermatitis, in which Staphylococcus aureus colonization is frequently observed. Staphylococcus aureus δ-toxin activates mast cells and promotes T helper 2 type skin inflammation in the tape-stripped murine skin. However, the physiological effects of δ-toxin present on the steady-state skin remain unknown. We aimed to investigate whether δ-toxin present on the steady-state skin impacts the development of food allergy. Material and methods: The non-tape-stripped skins of wild-type, KitW-sh/W-sh, or ST2-deficient mice were treated with ovalbumin (OVA) with or without δ-toxin before intragastric administration of OVA. The frequency of diarrhea, numbers of jejunum or skin mast cells, and serum levels of OVA-specific IgE were measured. Conventional dendritic cell 2 (cDC2) in skin and lymph nodes (LN) were analyzed. The cytokine levels in the skin tissues or culture supernatants of δ-toxin-stimulated murine keratinocytes were measured. Anti-IL-1α antibody-pretreated mice were analyzed. Results: Stimulation with δ-toxin induced the release of IL-1α, but not IL-33, in murine keratinocytes. Epicutaneous treatment with OVA and δ-toxin induced the local production of IL-1α. This treatment induced the translocation of OVA-loaded cDC2 from skin to draining LN and OVA-specific IgE production, independently of mast cells and ST2. This resulted in OVA-administered food allergic responses. In these models, pretreatment with anti-IL-1α antibody inhibited the cDC2 activation and OVA-specific IgE production, thereby dampening food allergic responses. Conclusion: Even without tape stripping, δ-toxin present on skin enhances epicutaneous sensitization to food allergen in an IL-1α-dependent manner, thereby promoting the development of food allergy.


Assuntos
Dermatite Atópica , Hipersensibilidade Alimentar , Camundongos , Animais , Staphylococcus aureus , Modelos Animais de Doenças , Proteína 1 Semelhante a Receptor de Interleucina-1 , Imunoglobulina E , Ovalbumina , Exotoxinas
15.
Nat Commun ; 14(1): 1417, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932081

RESUMO

Gel-forming mucins secreted by conjunctival goblet cells have been implicated in the clearance of allergens, pathogens, and debris. However, their roles remain incompletely understood. Here we show that human and mouse conjunctival goblet cell mucins have Alcian blue-detectable sialic acids, but not sulfates in the steady state. Interestingly, Balb/c mouse strain lacks this sialylation due to a point mutation in a sialyltransferase gene, St6galnac1, which is responsible for sialyl-Tn synthesis. Introduction of intact St6galnac1 to Balb/c restores the sialylation of conjunctival goblet cell mucus. Sialylated mucus efficiently captures and encapsulates the allergen particles in an impenetrable layer, leading to the protection of mice from the development of allergic conjunctivitis. Expression of ST6GALNAC1 and sialyl-Tn is upregulated in humans under conditions with chronic stimuli. These results indicate that the sialylated glycans on the ocular mucins play an essential role in maintaining the conjunctival mucosa by protecting from the incoming foreign bodies such as allergen particles.


Assuntos
Células Caliciformes , Mucinas , Camundongos , Humanos , Animais , Células Caliciformes/metabolismo , Mucinas/genética , Mucinas/metabolismo , Túnica Conjuntiva , Muco/metabolismo , Alérgenos
16.
Front Immunol ; 14: 1238297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711608

RESUMO

Background: Recently, we have developed a method to identify IgE cross-reactive allergens. However, the mechanism by which IgE cross-reactive allergens cause food allergy is not yet fully understood how. In this study, we aimed to understand the underlying pathogenesis by identifying food allergens that cross-react with house dust mite allergens in a murine model. Material and methods: Allergenic protein microarray analysis was conducted using serum from mice intraperitoneally injected with Dermatophagoides pteronyssinus (Der p) extract plus alum or alum alone as controls. Der p, Dermatophagoides farinae (Der f), coho salmon extract-sensitized and control mice were analyzed. Serum levels of IgE against Der p, Der f, coho salmon extract, protein fractions of coho salmon extract separated by ammonium sulfate precipitation and anion exchange chromatography, and recombinant coho salmon tropomyosin or actin were measured by an enzyme-linked immunosorbent assay. A murine model of cutaneous anaphylaxis or oral allergy syndrome (OAS) was established in Der p extract-sensitized mice stimulated with coho salmon extract, tropomyosin, or actin. Results: Protein microarray analysis showed that coho salmon-derived proteins were highly bound to serum IgE in Der p extract-sensitized mice. Serum IgE from Der p or Der f extract-sensitized mice was bound to coho salmon extract, whereas serum IgE from coho salmon extract-sensitized mice was bound to Der p or Der f extract. Analysis of the murine model showed that cutaneous anaphylaxis and oral allergic reaction were evident in Der p extract-sensitized mice stimulated by coho salmon extract. Serum IgE from Der p or Der f extract-sensitized mice was bound strongly to protein fractions separated by anion exchange chromatography of coho salmon proteins precipitated with 50% ammonium sulfate, which massively contained the approximately 38 kDa protein. We found that serum IgE from Der p extract-sensitized mice was bound to recombinant coho salmon tropomyosin. Der p extract-sensitized mice exhibited cutaneous anaphylaxis in response to coho salmon tropomyosin. Conclusion: Our results showed IgE cross-reactivity of tropomyosin between Dermatophagoides and coho salmon which illustrates salmon allergy following sensitization with the house dust mite Dermatophagoides. Our method for identifying IgE cross-reactive allergens will help understand the underlying mechanisms of food allergies.


Assuntos
Anafilaxia , Oncorhynchus kisutch , Animais , Camundongos , Tropomiosina , Actinas , Salmão , Sulfato de Amônio , Modelos Animais de Doenças , Pyroglyphidae , Alérgenos , Imunoglobulina E
17.
Front Immunol ; 13: 945222, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958602

RESUMO

Oral allergy syndrome (OAS) is an IgE-mediated immediate food allergy that is localized to the oral mucosa. Pollen food allergy syndrome (PFAS), a pollinosis-associated OAS, is caused by cross-reactivity between food and pollen allergens. However, we need to more precisely understand the underlying pathogenesis of OAS/PFAS. In the present study, we developed a method to comprehensively identify cross-reactive allergens by using murine model of OAS and protein microarray technology. We focused on lip angioedema, which is one of the most common symptoms of OAS, and confirmed that mast cells reside in the tissues inside the lower lip of the mice. Interestingly, when the food allergen ovalbumin (OVA) was injected inside the lower lip of mice with high levels of OVA-specific IgE followed by an intravenous injection of the Evans blue dye, we found immediate dye extravasation in the skin of the neck in a mast cell-dependent manner. In addition, the degree of mast cell degranulation in the oral cavity, reflecting the severity of oral allergic responses, can be estimated by measuring the amount of extravasated dye in the skin. Therefore, we used this model of OAS to examine IgE cross-reactive allergens in vivo. Protein microarray analysis showed that serum IgE from mice intraperitoneally sensitized with ragweed pollen, one of the major pollens causing pollinosis, bound highly to protein extracts from several edible plants including black peppercorn and fennel. We confirmed that the levels of black pepper-specific IgE and fennel-specific IgE were significantly higher in the serum from ragweed pollen-sensitized mice than in the serum from non-sensitized control mice. Importantly, analysis of murine model of OAS showed that the injection of black pepper or fennel extract induced apparent oral allergic responses in ragweed pollen-sensitized mice. These results indicate IgE cross-reactivity of ragweed pollen with black pepper and fennel. In conclusion, we developed mouse model of OAS to identify IgE cross-reactive pollen and food allergens, which will help understand the pathogenesis of OAS/PFAS.


Assuntos
Fluorocarbonos , Foeniculum , Hipersensibilidade Alimentar , Piper nigrum , Rinite Alérgica Sazonal , Alérgenos/análise , Animais , Antígenos de Plantas , Modelos Animais de Doenças , Hipersensibilidade Alimentar/etiologia , Imunoglobulina E , Camundongos , Extratos Vegetais , Pólen
18.
J Biol Chem ; 285(46): 35274-83, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20817736

RESUMO

Here we characterize leukocyte mono-Ig-like receptor 7 (LMIR7)/CLM-3 and compare it with an activating receptor, LMIR4/CLM-5, that is a counterpart of an inhibitory receptor LMIR3/CLM-1. LMIR7 shares high homology with LMIR4 in the amino acid sequences of its Ig-like and transmembrane domains. Flow cytometric analysis demonstrated that LMIR4 was predominantly expressed in neutrophils, whereas LMIR7 was highly expressed in mast cells and monocytes/macrophages. Importantly, LMIR7 engagement induced cytokine production in bone marrow-derived mast cells (BMMCs). Although FcRγ deficiency did not affect surface expression levels of LMIR7, it abolished LMIR7-mediated activation of BMMCs. Consistently we found significant interaction of LMIR7-FcRγ, albeit with lower affinity compared with that of LMIR4-FcRγ. Our results showed that LMIR7 transmits an activating signal through interaction with FcRγ. In addition, like LMIR4, LMIR7 synergizes with TLR4 in signaling. Analysis of several chimera receptors composed of LMIR4 and LMIR7 revealed these findings: 1) the transmembrane of LMIR7 with no charged residues maintained its surface expression at high levels in the absence of FcRγ; 2) the extracellular juxtamembrane region of LMIR7 had a negative effect on its surface expression levels; and 3) the strong interaction of LMIR4 with FcRγ depended on the extracellular juxtamembrane region as well as the transmembrane domain of LMIR4. Thus, LMIR7 shares similarities with LMIR4, although they are differentially regulated in their distribution, expression, and function.


Assuntos
Perfilação da Expressão Gênica , Receptores Imunológicos/genética , Sequência de Aminoácidos , Animais , Western Blotting , Células da Medula Óssea/metabolismo , Linhagem Celular , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Monócitos/citologia , Monócitos/metabolismo , Ligação Proteica , Receptores de IgG/genética , Receptores de IgG/metabolismo , Receptores Imunológicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
19.
J Immunol ; 183(2): 925-36, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19561101

RESUMO

Leukocyte mono-Ig-like receptor 3 (LMIR3) is an inhibitory receptor mainly expressed in myeloid cells. Coengagement of Fc epsilonRI and LMIR3 impaired cytokine production in bone marrow-derived mast cells (BMMCs) induced by Fc epsilonRI crosslinking alone. Mouse LMIR3 possesses five cytoplasmic tyrosine residues (Y241, Y276, Y289, Y303, Y325), among which Y241 and Y289 (Y241/289) or Y325 fit the consensus sequence of ITIM or immunotyrosine-based switch motif (ITSM), respectively. The inhibitory effect was abolished by the replacement of Y325 in addition to Y241/289 with phenylalanine (Y241/189/325/F) in accordance with the potential of Y241/289/325 to cooperatively recruit Src homology region 2 domain-containing phosphatase 1 (SHP)-1 or SHP-2. Intriguingly, LMIR3 crosslinking alone induced cytokine production in BMMCs expressing LMIR3 (Y241/276/289/303/325F) mutant as well as LMIR3 (Y241/289/325F). Moreover, coimmunoprecipitation experiments revealed that LMIR3 associated with ITAM-containing FcRgamma. Analysis of FcRgamma-deficient BMMCs demonstrated that both Y276/303 and FcRgamma played a critical role in the activating function of this inhibitory receptor. Importantly, LMIR3 crosslinking enhanced cytokine production of BMMCs stimulated by LPS, while suppressing production stimulated by other TLR agonists or stem cell factor. Thus, an inhibitory receptor LMIR3 has a unique property to associate with FcRgamma and thereby functions as an activating receptor in concert with TLR4 stimulation.


Assuntos
Lipopolissacarídeos/farmacologia , Mastócitos/imunologia , Receptores de IgG/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais/imunologia , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Receptor 4 Toll-Like/metabolismo , Tirosina/genética
20.
Ocul Surf ; 22: 152-162, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34428578

RESUMO

PURPOSE: We aimed to clarify the role of particulate allergen exposure to the conjunctiva in the development of allergic conjunctivitis. METHODS: We administered ragweed pollen suspension, pollen extract, pollen shell, particulate air pollutants, and their combinations to the mouse conjunctiva five days a week without prior sensitization. Clinical signs were scored. Histological changes, cellular infiltrations, mRNA expressions, lymph node cell recall responses, and serum immunoglobulin levels were assessed. Immune cell-depleting antibodies and ST2 knockout mice were used to investigate the cellular and molecular requirements. RESULTS: Pollen suspension, but not the extract or shell alone, induced robust eosinophilic conjunctivitis, accompanied by a proliferative response of epithelial cells. A combination of pollen extract and shell completely restored eosinophil accumulation. In addition, eosinophilic conjunctivitis was induced by a mixture of particulate air pollutants and pollen extract. Mechanistically, eosinophil accumulation was ameliorated by deficiency of the IL-33 receptor ST2 and abolished by depleting CD4+ T cells. Pollen shells, but not the extract, induced IL-33 release from conjunctival epithelial cells in vivo. CONCLUSIONS: Our results indicate the non-redundant roles for the allergens' particulate properties and soluble factors in the development of allergic conjunctivitis.


Assuntos
Conjuntivite Alérgica , Alérgenos , Animais , Túnica Conjuntiva , Camundongos , Camundongos Endogâmicos BALB C , Pólen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA