Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(3): 1050-1059, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38131167

RESUMO

Pancreatic islet transplantation presents a promising therapy for individuals suffering from type 1 diabetes. To maintain the function of transplanted islets in vivo, it is imperative to induce angiogenesis. However, the mechanisms underlying angiogenesis triggered by islets remain unclear. In this study, we introduced a microphysiological system to study the angiogenic capacity and dynamics of individual islets. The system, which features an open-top structure, uniquely facilitates the inoculation of islets and the longitudinal observation of vascular formation in in vivo like microenvironment with islet-endothelial cell communication. By leveraging our system, we discovered notable islet-islet heterogeneity in the angiogenic capacity. Transcriptomic analysis of the vascularized islets revealed that islets with high angiogenic capacity exhibited upregulation of genes related to insulin secretion and downregulation of genes related to angiogenesis and fibroblasts. In conclusion, our microfluidic approach is effective in characterizing the vascular formation of individual islets and holds great promise for elucidating the angiogenic mechanisms that enhance islet transplantation therapy.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Microfluídica , Ilhotas Pancreáticas/metabolismo , Secreção de Insulina
2.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420790

RESUMO

Molecularly imprinted polymers (MIPs) are synthetic polymers with specific binding sites that present high affinity and spatial and chemical complementarities to a targeted analyte. They mimic the molecular recognition seen naturally in the antibody/antigen complementarity. Because of their specificity, MIPs can be included in sensors as a recognition element coupled to a transducer part that converts the interaction of MIP/analyte into a quantifiable signal. Such sensors have important applications in the biomedical field in diagnosis and drug discovery, and are a necessary complement of tissue engineering for analyzing the functionalities of the engineered tissues. Therefore, in this review, we provide an overview of MIP sensors that have been used for the detection of skeletal- and cardiac-muscle-related analytes. We organized this review by targeted analytes in alphabetical order. Thus, after an introduction to the fabrication of MIPs, we highlight different types of MIP sensors with an emphasis on recent works and show their great diversity, their fabrication, their linear range for a given analyte, their limit of detection (LOD), specificity, and reproducibility. We conclude the review with future developments and perspectives.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Reprodutibilidade dos Testes , Polímeros/química , Músculos
3.
J Mater Sci Mater Med ; 34(1): 5, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36586040

RESUMO

The administration of anti-vascular endothelial growth factor drugs in the posterior eye segment with sustained release through less invasive methods is a challenge in the treatment of age-related macular disease. We developed a flexible capsule device using porous poly(dimethylsiloxane) (PDMS) that was able to release ranibizumab. The porous PDMS sheet was fabricated by salt-leaching of a micro-sectioned PDMS sheet containing salt microparticles. Observation with scanning electron microscopy revealed that the pore densities could be adjusted by the concentration of salt. The in vitro release study showed that the release rate of fluorescein isothiocyanate-tagged albumin could be adjusted based on the pore density of the porous PDMS sheet. Ranibizumab could be released in a sustained-release manner for 16 weeks. The device was implanted on the sclera; its efficacy in terms of the suppression of laser-induced choroidal neovascularization (CNV) in rats was compared with that of monthly intravitreal injections of ranibizumab. At 8 and 18 weeks after implantation, the CNV area was significantly reduced in rats that received the ranibizumab-releasing device compared with those that received the placebo device. However, although monthly intravitreal injections of ranibizumab reduced CNV for 8 weeks, this reduction was not sustained for 18 weeks. In conclusion, we demonstrated a novel controlled-release device using a porous PDMS sheet that could suppress CNV via a less invasive transscleral route versus intravitreal injections. This device may also reduce the occurrence of side effects associated with frequent intravitreal injections.


Assuntos
Neovascularização de Coroide , Ranibizumab , Ratos , Animais , Ranibizumab/uso terapêutico , Porosidade , Neovascularização de Coroide/tratamento farmacológico , Lasers , Inibidores da Angiogênese/uso terapêutico
4.
Sensors (Basel) ; 21(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068811

RESUMO

Three-dimensional (3D) in vitro models, such as organ-on-a-chip platforms, are an emerging and effective technology that allows the replication of the function of tissues and organs, bridging the gap amid the conventional models based on planar cell cultures or animals and the complex human system. Hence, they have been increasingly used for biomedical research, such as drug discovery and personalized healthcare. A promising strategy for their fabrication is 3D printing, a layer-by-layer fabrication process that allows the construction of complex 3D structures. In contrast, 3D bioprinting, an evolving biofabrication method, focuses on the accurate deposition of hydrogel bioinks loaded with cells to construct tissue-engineered structures. The purpose of the present work is to conduct a systematic review (SR) of the published literature, according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, providing a source of information on the evolution of organ-on-a-chip platforms obtained resorting to 3D printing and bioprinting techniques. In the literature search, PubMed, Scopus, and ScienceDirect databases were used, and two authors independently performed the search, study selection, and data extraction. The goal of this SR is to highlight the importance and advantages of using 3D printing techniques in obtaining organ-on-a-chip platforms, and also to identify potential gaps and future perspectives in this research field. Additionally, challenges in integrating sensors in organs-on-chip platforms are briefly investigated and discussed.


Assuntos
Bioimpressão , Dispositivos Lab-On-A-Chip , Animais , Humanos , Hidrogéis , Impressão Tridimensional , Engenharia Tecidual
5.
J Mater Sci Mater Med ; 31(6): 52, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32462459

RESUMO

In this study, we developed a subcutaneous insulin-releasing device consisting of a disk-shaped capsule and drug formulation comprised of poly(ethylene glycol) dimethacrylates, then evaluated its efficacy on retinal function in streptozotocin (STZ)-induced diabetic rats. In vitro release studies showed that recombinant human insulin was released with a constant rate for more than 30 days. The device was able to maintain a basal level of blood glucose in diabetic rats for a prolonged period of more than 30 days, simultaneously preventing a decrease in body weight. For assessing the pharmacological effect of the device on retinal function in diabetic rats, electroretinograms were conducted for 12 weeks. The reduction in amplitude and delay in implicit time were attenuated by the device during the initial 4 weeks of application. The increase in gene expression of protein kinase C (PKC)-γ and caspase-3 in the diabetic retina was also attenuated by the device. Immunohistochemistry showed that the increase in glial fibrillary acidic protein expression in the diabetic retina was attenuated by the device. Histological evaluation of subcutaneous tissue around the device showed the biocompatibility of the device. In conclusion, the insulin-releasing device attenuated the reduction of retinal function in STZ-induced diabetic conditions for 4 weeks and the efficacy of the device might be partially related to PKC signaling in the retina. The long-term ability to control the blood glucose level might help to reduce the daily frequency of insulin injections.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Retinopatia Diabética/prevenção & controle , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Insulina/administração & dosagem , Animais , Glicemia , Liberação Controlada de Fármacos , Eletrorretinografia , Regulação da Expressão Gênica/efeitos dos fármacos , Terapia de Substituição Renal Híbrida , Insulina/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/metabolismo
6.
Biomed Microdevices ; 21(3): 60, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31257546

RESUMO

Minimally invasive delivery of a sustained drug release device to the body is a promising approach for treating chronic conditions such as retinal diseases. Herein, we describe a sheet-type device capable of sustained drug release and deployment control after being applied to the body through a small opened hole via a syringe-type injector. Such device consists of a four-layered structure of thin photopolymerized sheets, which are in turn made of different ratios of a mixture of polyethylene glycol dimethacrylate (PEGDM) and triethylene glycol dimethacrylate (TEGDM). A layer containing a model drug, i.e., fluorescein, was sandwiched between a controlled release and guard layer to achieve sustained unidirectional drug release. A deployment layer was then attached onto the guard layer to control the curvature of the device following deployment. The sheet-type device was sufficiently flexible to be rolled up and could be inserted into a syringe-type injector. When the device was injected into the subconjunctival space of a rabbit eye through a small opened hole, it unfolded to fit the eyeball curvature. Moreover, homogenates of the choroid/retinal pigment epithelium (RPE) as well as the retina exhibited fluorescence during 4 weeks after implantation, confirming that the drug could be delivered to the retina by using the device. This developed sheet-type device offers the possibility of achieving minimally invasive transplantation into diseased tissues and organs, and could provide improved therapeutic modalities as well as reduce possible side effects.


Assuntos
Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos/instrumentação , Animais , Olho/metabolismo , Fluoresceína/metabolismo , Masculino , Coelhos
7.
J Mater Sci Mater Med ; 28(7): 107, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28534288

RESUMO

Transscleral drug delivery is becoming increasingly popular to manage posterior eye diseases. To evaluate the clinical application of a transscleral, sustained, unoprostone (UNO)-release device (URD) constructed of photopolymerized tri(ethyleneglycol) dimethacrylate and poly(ethyleneglycol) dimethacrylate, we evaluated physicochemical and biological properties of this device. The URD consists of a drug-impermeable reservoir and a semi-permeable cover. The in vitro release rate of UNO from the URD increased with increasing temperatures from 20 to 45 °C. Scanning electron microscopy and atomic-force microscopy showed that the border between the reservoir and drug formulation was sharply defined but that between the cover and drug was poorly determined, indicating that UNO could permeate only through the cover. For stability tests, the URDs were sterilized with ethylene oxide gas and stored at 40 °C/75% for 3 and 6 months and at 25 °C/60% for 3, 6, 9, 12, 18, and 24 months; UNO content and release rate at 37 °C were then evaluated. There was no significant decrease in either UNO content or release rate after the storage conditions. Cytotoxicity was evaluated by examining the colony formation of Chinese hamster fibroblast V79 cells in a media extract of the URD without UNO. This extract did not affect colony formation of V79 cells, indicating the cytocompatibility of the URD. In conclusion, the URD was physically stable for 24 months and is potentially useful for clinical application.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Dinoprosta/análogos & derivados , Metacrilatos/química , Polietilenoglicóis/química , Absorção Fisico-Química , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/química , Preparações de Ação Retardada/toxicidade , Difusão , Dinoprosta/administração & dosagem , Dinoprosta/química , Dinoprosta/uso terapêutico , Composição de Medicamentos/métodos
8.
Biomed Microdevices ; 18(4): 55, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27294487

RESUMO

A commercial painless microneedle was filled with physiological saline agar, and this needle-based salt bridge was inserted into the skin (a piece of porcine skin and a flank skin of a live mouse) to make an electrical contact with its subepidermal region. The transepidermal potential (TEP), the potential difference between the skin surface and the subepidermal region, was measured using this inner electrode and a conventional agar electrode on the surface of the skin. Control of penetration depth of the inner electrode with a spacer and hydrophilic pretreatment with ozone plasma were found to be necessary for stable measurement. The TEP was reduced upon damages on the skin surface by tape stripping and acetone defatting, which indicated the fabricated needle electrode is useful for the minimally-invasive measurement of TEP and evaluation of skin barrier functions. Furthermore, we showed that the device integrating two electrodes into a single compact probe was useful to evaluate the local barrier functions and their mapping on a skin. This device could be a personal diagnostic tool in the fields of medicine and cosmetics in future.


Assuntos
Agulhas , Potenciometria/métodos , Pele/efeitos dos fármacos , Administração Cutânea , Ágar , Animais , Eletrodos , Desenho de Equipamento , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Sais/química , Suínos
9.
Adv Exp Med Biol ; 854: 471-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427448

RESUMO

We evaluated the effects of a transscleral drug delivery device, consisting of a reservoir and controlled-release cover, which were made of photopolymerized polyethylene glycol dimethacrylate and triethylene glycol dimethacrylate, combined at different ratios. Geranylgeranylacetone (GGA), a heat-shock protein (HSP) inducer, was loaded into the device. The GGA was released from the device under zero-order kinetics. At both 1 week and 4 weeks after device implantation on rat sclera, HSP70 gene and protein expression were up-regulated in the sclera-choroid-retinal pigment epithelium fraction of rat eyes treated with the GGA-loaded device compared with rat eyes treated with saline-loaded devices or eyes of non-treated rats. Flash electroretinograms were recorded 4 days after white light exposure (8000 lx for 18 h). Electroretinographic amplitudes of the a- and b-waves were preserved significantly in rats treated with GGA-loaded devices compared with rats treated with saline-loaded devices. Histological examination showed that the outer nuclear layer thickness was preserved in rats that had the GGA-loaded device. These results may show that transscleral GGA delivery using our device may offer an alternative method to treat retinal diseases.


Assuntos
Diterpenos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Doenças Retinianas/prevenção & controle , Esclera/metabolismo , Animais , Western Blotting , Corioide/efeitos dos fármacos , Corioide/metabolismo , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Diterpenos/farmacocinética , Sistemas de Liberação de Medicamentos/instrumentação , Eletrorretinografia , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Luz/efeitos adversos , Masculino , Metacrilatos/química , Polietilenoglicóis/química , Polímeros/química , Ácidos Polimetacrílicos/química , Ratos Sprague-Dawley , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/efeitos da radiação , Doenças Retinianas/etiologia , Doenças Retinianas/fisiopatologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
10.
J Mater Sci Mater Med ; 26(9): 230, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26335210

RESUMO

Age-related macular degeneration is the leading cause of legal blindness among older individuals. Therefore, the development of new therapeutic agents and optimum drug delivery systems for its treatment are crucial. In this study, we investigate whether clotrimazole (CLT) is capable of protecting retinal cells against oxidative-induced injury and the possible inhibitory effect of a sustained CLT-release device against light-induced retinal damage in rats. In vitro results indicated pretreatment of immortalized retinal pigment epithelium cells (RPE-J cells) with 10-50 µM CLT before exposure to oxygen/glucose deprivation conditions for 48 h decreased the extent of cell death, attenuated the percentage of reactive oxygen species-positive cells, and decreased the levels of cleaved caspase-3. The device consists of a separately fabricated reservoir, a CLT formulation, and a controlled release cover, which are made of poly(ethyleneglycol) dimethacrylate (PEGDM) and tri(ethyleneglycol) dimethacrylate (TEGDM). The release rate of CLT was successfully tuned by changing the ratio of PEGDM/TEGDM in the cover. In vivo results showed that use of a CLT-loaded device lessened the reduction of electroretinographic amplitudes after light exposure. These findings indicate that the application of a polymeric CLT-loaded device may be a promising method for the treatment of some retinal disorders.


Assuntos
Clotrimazol/administração & dosagem , Implantes de Medicamento , Degeneração Macular/tratamento farmacológico , Animais , Linhagem Celular Transformada , Clotrimazol/farmacologia , Clotrimazol/uso terapêutico , Preparações de Ação Retardada , Eletrorretinografia , Masculino , Oxirredução , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo
11.
Small ; 10(23): 4851-7, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25070416

RESUMO

A simple and robust method termed "fiber-assisted molding (FAM)" is presented to create biomimetic three-dimensional surfaces with controllable curvature and helical twist. The alignment of muscle fibrils and the assembly of helically patterned extracellular matrix by cells demonstrate the potential of this method for tissue engineering and other materials science applications.


Assuntos
Biomimética/métodos , Engenharia Tecidual/métodos , Materiais Biomiméticos , Dimetilpolisiloxanos/química , Matriz Extracelular , Fibroblastos/citologia , Humanos , Teste de Materiais , Oxigênio/química , Propriedades de Superfície
12.
Adv Exp Med Biol ; 801: 837-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24664778

RESUMO

We constructed brain-derived neurotrophic factor (BDNF) expressing rat retinal pigment epithelial (RPE) cells by stable transfection of BDNF cDNA, and the RPE cells were cultured on a cross-linked collagen sheet (Coll-RPE-BDNF). BDNF expression of the Coll-RPE-BDNF was confirmed by western blot, and the Coll-RPE-BDNF was transplanted into the rabbit sclera. In vivo BDNF expression was confirmed by His expression that was linked to the expressing BDNF. The effect of the released BDNF was examined in a rabbit acute high intraocular pressure system by electroretinogram and histological examination. Statistically significant preservation of ERG b wave amplitude was observed in the rabbits treated by Coll-RPE-BDNF when compared to that of no treatment. Statistically significant preservation of the thickness of the inner nuclear layer at the transplanted area was observed in the rabbits treated by Coll-RPE-BDNF compared to that of no treatment. Intra-scleral Coll-RPE-BDNF transplantation may partially rescue retinal cells from acute high intraocular pressure.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transplante de Células/métodos , Pressão Intraocular/fisiologia , Retina/fisiologia , Doenças Retinianas/cirurgia , Epitélio Pigmentado da Retina/transplante , Animais , Colágeno/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Eletrorretinografia , Sobrevivência de Enxerto , Masculino , Coelhos , Ratos , Retina/citologia , Doenças Retinianas/etiologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Esclera/cirurgia
13.
Nano Lett ; 13(7): 3185-92, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23758622

RESUMO

Controlling the cellular microenvironment can be used to direct the cellular organization, thereby improving the function of synthetic tissues in biosensing, biorobotics, and regenerative medicine. In this study, we were inspired by the microstructure and biological properties of the extracellular matrix to develop freestanding ultrathin polymeric films (referred as "nanomembranes") that were flexible, cell adhesive, and had a morphologically tailorable surface. The resulting nanomembranes were exploited as flexible substrates on which cell-adhesive micropatterns were generated to align C2C12 skeletal myoblasts and embedded fibril carbon nanotubes enhanced the cellular elongation and differentiation. Functional nanomembranes with tunable morphology and mechanical properties hold great promise in studying cell-substrate interactions and in fabricating biomimetic constructs toward flexible biodevices.


Assuntos
Microambiente Celular/fisiologia , Membranas Artificiais , Mioblastos/citologia , Mioblastos/fisiologia , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Engenharia Tecidual/métodos , Animais , Agregação Celular/fisiologia , Técnicas de Cultura de Células/métodos , Linhagem Celular , Separação Celular , Camundongos , Micromanipulação/métodos , Propriedades de Superfície
14.
Nat Commun ; 15(1): 962, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332125

RESUMO

Human placental villi have essential roles in producing hormones, mediating nutrient and waste exchange, and protecting the fetus from exposure to xenobiotics. Human trophoblast organoids that recapitulate the structure of villi could provide an important in vitro tool to understand placental development and the transplacental passage of xenobiotics. However, such organoids do not currently exist. Here we describe the generation of trophoblast organoids using human trophoblast stem (TS) cells. Following treatment with three kinds of culture medium, TS cells form spherical organoids with a single outer layer of syncytiotrophoblast (ST) cells that display a barrier function. Furthermore, we develop a column-type ST barrier model based on the culture condition of the trophoblast organoids. The bottom membrane of the column is almost entirely covered with syndecan 1-positive ST cells. The barrier integrity and maturation levels of the model are confirmed by measuring transepithelial/transendothelial electrical resistance (TEER) and the amount of human chorionic gonadotropin. Further analysis reveals that the model can be used to derive the apparent permeability coefficients of model compounds. In addition to providing a suite of tools for the study of placental development, our trophoblast models allow the evaluation of compound transfer and toxicity, which will facilitate drug development.


Assuntos
Placenta , Trofoblastos , Humanos , Gravidez , Feminino , Placentação , Células-Tronco , Organoides , Diferenciação Celular
15.
Sci Adv ; 10(8): eadi4819, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394208

RESUMO

The initiation of human pregnancy is marked by the implantation of an embryo into the uterine environment; however, the underlying mechanisms remain largely elusive. To address this knowledge gap, we developed hormone-responsive endometrial organoids (EMO), termed apical-out (AO)-EMO, which emulate the in vivo architecture of endometrial tissue. The AO-EMO comprise an exposed apical epithelium surface, dense stromal cells, and a self-formed endothelial network. When cocultured with human embryonic stem cell-derived blastoids, the three-dimensional feto-maternal assembloid system recapitulates critical implantation stages, including apposition, adhesion, and invasion. Endometrial epithelial cells were subsequently disrupted by syncytial cells, which invade and fuse with endometrial stromal cells. We validated this fusion of syncytiotrophoblasts and stromal cells using human blastocysts. Our model provides a foundation for investigating embryo implantation and feto-maternal interactions, offering valuable insights for advancing reproductive medicine.


Assuntos
Implantação do Embrião , Endométrio , Gravidez , Feminino , Humanos , Blastocisto , Embrião de Mamíferos , Trofoblastos
16.
Biomed Microdevices ; 15(1): 109-15, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22965808

RESUMO

Engineered skeletal muscle tissues are ideal candidates for applications in drug screening systems, bio-actuators, and as implantable constructs in tissue engineering. Electrical field stimulation considerably improves the differentiation of muscle cells to muscle myofibers. Currently used electrical stimulators often use direct contact of electrodes with tissue constructs or their culture medium, which may cause hydrolysis of the culture medium, joule heating of the medium, contamination of the culture medium due to products of electrodes corrosion, and surface fouling of electrodes. Here, we used an interdigitated array of electrodes combined with an isolator coverslip as a contactless platform to electrically stimulate engineered muscle tissue, which eliminates the aforementioned problems. The effective stimulation of muscle myofibers using this device was demonstrated in terms of contractile activity and higher maturation as compared to muscle tissues without applying the electrical field. Due to the wide array of potential applications of electrical stimulation to two- and three-dimensional (2D and 3D) cell and tissue constructs, this device could be of great interest for a variety of biological applications as a tool to create noninvasive, safe, and highly reproducible electric fields.


Assuntos
Estimulação Elétrica/instrumentação , Músculo Esquelético/citologia , Engenharia Tecidual/instrumentação , Animais , Linhagem Celular , Eletrodos , Gelatina/química , Regulação da Expressão Gênica , Hidrogéis/química , Metacrilatos/química , Camundongos , Músculo Esquelético/metabolismo , Platina/química , Alicerces Teciduais/química
17.
Heliyon ; 9(3): e14392, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36942217

RESUMO

The objectives of this study were to develop a sustained-release device for carteolol hydrochloride (CH) and investigate any potential difference in the intraocular distribution of this agent between the transscleral administration of the device and treatment with eyedrops. The device was formulated with photocurable resin, poly (ethyleneglycol) dimethacrylate, to fit within the curve of the rabbit eyeball. In vitro study showed that CH was released in a sustained-release manner for 2 weeks. The concentration of CH in the retina, choroid/retinal pigment epithelium, sclera, iris, and aqueous humor was determined by high-performance liquid chromatography. Transscleral administration was able to deliver CH to the posterior segment (i.e., retina and choroid/retinal pigment epithelium) rather than the anterior segment (i.e., aqueous humor), while eyedrops delivered CH only to the anterior segment. Transscleral administration could deliver CH to aqueous humor at half the concentration versus treatment with eyedrops and reduced intraocular pressure (IOP) at 1 day after implantation; however, the IOP-lowering effect was not sustained thereafter. In conclusion, transscleral drug delivery may be a useful method for the reduction of IOP. Notably, the aqueous concentration must be equal to that delivered by the eyedrops, and this approach might be preferable for drug delivery to the posterior segment of the eye.

18.
Front Bioeng Biotechnol ; 11: 991821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122863

RESUMO

Three dimensional (3D) bioprinting is a powerful tool, that was recently applied to tissue engineering. This technique allows the precise deposition of cells encapsulated in supportive bioinks to fabricate complex scaffolds, which are used to repair targeted tissues. Here, we review the recent developments in the application of 3D bioprinting to dental tissue engineering. These tissues, including teeth, periodontal ligament, alveolar bones, and dental pulp, present cell types and mechanical properties with great heterogeneity, which is challenging to reproduce in vitro. After highlighting the different bioprinting methods used in regenerative dentistry, we reviewed the great variety of bioink formulations and their effects on cells, which have been established to support the development of these tissues. We discussed the different advances achieved in the fabrication of each dental tissue to provide an overview of the current state of the methods. We conclude with the remaining challenges and future needs.

19.
Expert Opin Drug Discov ; 18(1): 47-63, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535280

RESUMO

INTRODUCTION: With the advances in skeletal muscle tissue engineering, new platforms have arisen with important applications in biology studies, disease modeling, and drug testing. Current developments highlight the quest for engineering skeletal muscle tissues with higher complexity . These new human skeletal muscle tissue models will be powerful tools for drug discovery and development and disease modeling. AREAS COVERED: The authors review the latest advances in in vitro models of engineered skeletal muscle tissues used for testing drugs with a focus on the use of four main cell culture techniques: Cell cultures in well plates, in microfluidics, in organoids, and in bioprinted constructs. Additional information is provided on the satellite cell niche. EXPERT OPINION: In recent years, more sophisticated in vitro models of skeletal muscle tissues have been fabricated. Important developments have been made in stem cell research and in the engineering of human skeletal muscle tissue. Some platforms have already started to be used for drug testing, notably those based on the parameters of hypertrophy/atrophy and the contractibility of myotubes. More developments are expected through the use of multicellular types and multi-materials as matrices . The validation and use of these models in drug testing should now increase.


Assuntos
Descoberta de Drogas , Engenharia Tecidual , Humanos , Músculo Esquelético/fisiologia , Organoides , Fibras Musculares Esqueléticas
20.
Cell Transplant ; 32: 9636897231165117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37039377

RESUMO

Retinal cells are irreparably damaged by diseases such as age-related macular degeneration (AMD). A promising method to restore partial or whole vision is through cell-based transplantation to the damaged location. However, cell transplantation using conventional vitreous surgery is an invasive procedure that may induce infections and has a high failure rate of cell engraftment. In this study, we describe the fabrication of a biodegradable composite nanosheet used as a substrate to support retinal pigment epithelial (RPE-J) cells, which can be grafted to the sub-retinal space using a minimally invasive approach. The nanosheet was fabricated using polycaprolactone (PCL) and collagen in 80:20 weight ratio, and had size of 200 µm in diameter and 300 nm in thickness. These PCL/collagen nanosheets showed excellent biocompatibility and mechanical strength in vitro. Using a custom designed 27-gauge glass needle, we successfully transplanted an RPE-J cell loaded nanosheet into the sub-retinal space of a rat model with damaged photoreceptors. The cell loaded nanosheet did not trigger immunological reaction within 2 weeks of implantation and restored the retinal environment. Thus, this composite PCL/collagen nanosheet holds great promise for organized cell transplantation, and the treatment of retinal diseases.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Ratos , Animais , Retina , Colágeno , Degeneração Macular/cirurgia , Transplante de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA