Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oral Dis ; 24(8): 1514-1521, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29943386

RESUMO

OBJECTIVE: Octacalcium phosphate (OCP) and collagen (col) composite (OCPcol) demonstrated superior bone regeneration properties, and its commercialization appears to be forthcoming. As a practical medical material for new combination products, we developed a freeze-dried composite with OCPcol and teriparatide (TPTD) (OCPcolTPTDf), and investigated its bone regenerative properties. MATERIALS AND METHODS: A disk of OCPcol was made by mixing OCP granules and atelocollagen for medical use. Then, OCPcolTPTDf was prepared by impregnation of the OCPcol disk with 1.0 or 0.1 µg of TPTD solution (OCPcolTPTDf 1.0 and OCPcolTPTDf 0.1, respectively) followed by lyophilization. In vitro release profiles of TPTD from OCPcolTPTDf were determined using an enzyme-linked immunosorbent assay. Implantation of OCPcolTPTDf or OCPcol was carried out for a rat critical-sized calvarial defect. And five defects in each group were collected after 12 weeks of implantation. RESULTS: The retention-release profiles of TPTD from OCPcolTPTDf supported a higher degree of retention of TPTD. Radiographic, histological, and histomorphometric examinations indicated that regenerated bone was filled in most of the defects of the OCPcolTPTDf. Additionally, the OCPcolTPTDf groups showed significantly enhanced bone regeneration compared with the OCPcol group. CONCLUSIONS: These results suggested that this newly developed bone regenerative composite could be a practical medical material.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Colágeno/farmacologia , Teriparatida/farmacologia , Animais , Combinação de Medicamentos , Liofilização , Masculino , Ratos , Crânio/diagnóstico por imagem
2.
J Biomed Mater Res B Appl Biomater ; 108(1): 243-252, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30980703

RESUMO

The overall objective of this study was to assess the safety and efficacy of OCP/Col as a bone substitute material for bone regeneration during sinus floor augmentation. Maxillary sinus floor augmentation was performed thorough lateral window approach. According to the height of host bone, simultaneous approach (≥5 mm) or staged approach (less than 5 mm) was applied. In this research, clinical findings of dental implant treatment after setting the restorations were set as a primary endpoint in both approaches (infection, inflammation around the implant, movement of the implant, pain, sensory disorder, and bone resorption around the implant body on radiological evaluation.). In staged approach, histological evaluation of bone biopsy specimen was also conducted. As secondary endpoints, hounsfield unit (HU) value, vertical bone height, implant stability quotient (ISQ), and adverse events during the research were evaluated. In all cases, as a primary endpoint, clinical findings after setting the restorations were uneventful with no adverse events. Histological structure demonstrated mature bone derived from OCP/Col. In the ossified area, osteogenesis was observed around OCP granules, and osteoblast-like cells were arrayed around OCP granules. Osteocyte encapsulation was recognized in the new bone. HU increased over time with both approaches. Vertical bone height significantly increased at 3 months postoperatively, and maintained during follow-up. ISQ increased with both approaches. In particular, ISQ was significantly increased with the staged approach. This clinical trial demonstrated the safety and efficacy of OCP/Col for bone regeneration in maxillary sinus floor augmentation. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:243-252, 2020.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/administração & dosagem , Colágeno/administração & dosagem , Levantamento do Assoalho do Seio Maxilar , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
3.
J Biomed Mater Res B Appl Biomater ; 106(5): 1851-1857, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28922546

RESUMO

Octacalcium phosphate and collagen composite (OCP/Col) achieves stable bone regeneration without cell transplantation in preclinical studies. Recently, a sponsor-initiated clinical trial was conducted to commercialize the material. The present study investigated bone regeneration by OCP/Col with the single local administration of teriparatide (parathyroid hormone 1-34; TPTD). OCP/Col was prepared by mixing sieved granules of OCP and atelocollagen for medical use and a disk was molded. After the creation of a rodent critical-sized calvarial defect, OCP/Col or OCP/Col with dripped TPTD solution (1.0 or 0.1 µg; OCP/Col/TPTDd1.0 or OCP/Col/TPTDd0.1) was implanted into the defect. Six defects in each group were fixed 12 weeks after implantation. Radiographic examinations indicated that radiopaque figures in defects treated with OCP/Col with TPTD (OCP/Col/TPTDd) occupied a wider range than those treated with OCP/Col. Histological results demonstrated that most of the defect in OCP/Col/TPTDd was filled with newly formed bone. A histomorphometrical examination indicated that the percentage of newly formed bone was significantly higher in the defects of OCP/Col/TPTDd 1.0 (53.6 ± 4.3%) and OCP/Col/TPTDd 0.1 (52.2 ± 7.4%) than in those of OCP/Col (40.1 ± 8.4%), whereas no significant differences were observed between OCP/Col/TPTDd1.0 and OCP/Col/TPTDd0.1. These results suggest that OCP/Col with the single local administration of TPTD enhances bone regeneration in a rodent calvarial critical-sized bone defect. © 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1851-1857, 2018.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Fosfatos de Cálcio/farmacologia , Crânio , Teriparatida/farmacologia , Animais , Colágeno/metabolismo , Masculino , Ratos , Ratos Wistar , Crânio/lesões , Crânio/metabolismo , Crânio/patologia
4.
J Tissue Eng Regen Med ; 12(2): e1186-e1194, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28633197

RESUMO

An octacalcium phosphate and collagen composite (OCP/Col) achieved efficient bone regeneration with excellent resorbability. After the confirmation of its safety and efficacy in preclinical animal studies, the present study investigated the influence of electron beam irradiation doses on bone regeneration by OCP/Col in order to secure its commercialization. OCP/Col was prepared as previously described and the packed OCP/Col was sterilized using different doses of electron beam irradiation. A standardized defect, 9 mm in diameter, was made in the rat calvarium. A disk of OCP/Col (diameter 9 mm, thickness 1.5 mm) sterilized using different doses of electron beam irradiation was then implanted into the defect. Five defects in each group were treated and fixed 4, 12 and 24 weeks after implantation. Specimens were decalcified and stained with haematoxylin and eosin. In a histomorphometrical analysis, the percentage of newly formed bone in the defect (n-Bone%) was calculated. In OCP/Col 15 kGy, newly formed bone was enhanced and present throughout the defect with the resorption of OCP/Col. Furthermore, vigorous bone remodelling and bone maturation were observed. In OCP/Col 40 kGy, newly formed bone was not as prominent as that with OCP/Col 15 kGy. A histomorphometrical analysis using Student's t-test at 24 weeks revealed that the n-Bone% of OCP/Col 15 kGy (65.9 ± 7.14%) was significantly higher than that of OCP/Col 40 kGy (38.0 ± 10.2%). These results suggest that different electron beam irradiation doses influence bone regeneration by OCP/Col.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/efeitos da radiação , Fosfatos de Cálcio/farmacologia , Colágeno/farmacologia , Elétrons , Animais , Colágeno/ultraestrutura , Implantes Experimentais , Masculino , Ratos Wistar , Crânio/diagnóstico por imagem , Crânio/efeitos dos fármacos , Crânio/patologia , Crânio/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos , Difração de Raios X , Microtomografia por Raio-X
5.
Materials (Basel) ; 11(2)2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29393874

RESUMO

BACKGROUND: Previous studies showed that octacalcium (OCP) collagen composite (OCP/Col) can be used to repair human jaw bone defects without any associated abnormalities. The present study investigated whether OCP/Col could be applied to dental implant treatment using a dog tooth extraction socket model. METHODS: The premolars of dogs were extracted; each extraction socket was extended, and titanium dental implants were placed in each socket. OCP/Col was inserted in the space around a titanium dental implant. Autologous bone was used to fill the other sockets, while the untreated socket (i.e., no bone substitute material) served as a control. Three months after the operation, these specimens were analyzed for the osseointegration of each bone substitute material with the surface of the titanium dental implant. RESULTS: In histomorphometric analyses, the peri-implant bone areas (BA%) and bone-implant contact (BIC%) were measured. There was no difference in BA% or BIC% between OCP/Col and autologous bone. CONCLUSION: These results suggested that OCP/Col could be used for implant treatment as a bone substitute.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA