Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 112(2): 1404-1418, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31430516

RESUMO

Plant respiratory burst oxidase homolog (Rboh) gene family encodes the key enzymatic subunits of reactive oxygen species (ROS) production pathways, and play crucial role in plant signaling, development and stress responses. In present work, twenty genes were identified in Nicotiana tabacum Rboh family (NtabRboh) and classified into four phylogenetic groups (I-IV). Fourteen NtabRboh genes were positioned on ten chromosomes (i.e., Ch1, 2, 4, 7-11, 14 and 21), and six scaffolds. Synteny and evolutionary analysis showed that most of the NtabRboh genes have evolved from the genomes of the ancestor species (N. tomentosiformis and N. sylvestris), which afterwards expanded through duplication events. The promoter regions of the NtabRboh genes contained numerous cis-acting regulatory elements for hormones, plant growth, and different biotic and abiotic factors. The NtabRbohF gene transcript comprised target sites for wounding and stress responsive microRNAs: nta-miR166a-d, g and h. The transcript abundance of NtabRboh genes in different tissues reflected their important for plant growth and organ development in tobacco. RT-qPCR-assays demonstrated that the expression of NtabRboh genes are regulated by viral and bacterial pathogens, drought, cold and cadmium stress. The expression levels NtabRbohA, B and C were significantly up-regulated in "black shank and tobacco mosaic virus-inoculated susceptible and transgenic tobacco cultivars, showing that these genes play important roles in disease resistance.


Assuntos
Resistência à Doença , Evolução Molecular , NADPH Oxidases/genética , Nicotiana/genética , Proteínas de Plantas/genética , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , NADPH Oxidases/metabolismo , Proteínas de Plantas/metabolismo , Elementos de Resposta , Nicotiana/metabolismo
2.
Int J Mol Sci ; 16(9): 22008-26, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26378528

RESUMO

Valine glycine repeat G (VgrG) proteins are regarded as one of two effectors of Type VI secretion system (T6SS) which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa) RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H2O2 and paraquat-induced oxidative stress, high salt, low temperature, and vgrG mutation, compared to the control. However, pathogen growth was unaffected by co-culture with a rice rhizobacterium Burkholderia seminalis R456. In addition, expression of 14 T6SS structural and eight vgrG genes was significantly changed under seven conditions. Among different stress conditions, high salt, and low temperature showed a higher effect on the expression of T6SS gene compared with host infection and other environmental conditions. As a first report, this study revealed an association of T6SS gene expression of the pathogen with the host infection, gene mutation, and some common environmental stresses. The results of this research can increase understanding of the biological function of T6SS in this economically-important pathogen of rice.


Assuntos
Comamonadaceae/genética , Interação Gene-Ambiente , Viabilidade Microbiana/genética , Análise de Componente Principal , Sistemas de Secreção Tipo VI/genética , Meio Ambiente , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Estresse Fisiológico
3.
BMC Genomics ; 15: 853, 2014 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-25280591

RESUMO

BACKGROUND: Cyclic nucleotide-gated channels (CNGCs) are Ca2+-permeable cation transport channels, which are present in both animal and plant systems. They have been implicated in the uptake of both essential and toxic cations, Ca2+ signaling, pathogen defense, and thermotolerance in plants. To date there has not been a genome-wide overview of the CNGC gene family in any economically important crop, including rice (Oryza sativa L.). There is an urgent need for a thorough genome-wide analysis and experimental verification of this gene family in rice. RESULTS: In this study, a total of 16 full length rice CNGC genes distributed on chromosomes 1-6, 9 and 12, were identified by employing comprehensive bioinformatics analyses. Based on phylogeny, the family of OsCNGCs was classified into four major groups (I-IV) and two sub-groups (IV-A and IV- B). Likewise, the CNGCs from all plant lineages clustered into four groups (I-IV), where group II was conserved in all land plants. Gene duplication analysis revealed that both chromosomal segmentation (OsCNGC1 and 2, 10 and 11, 15 and 16) and tandem duplications (OsCNGC1 and 2) significantly contributed to the expansion of this gene family. Motif composition and protein sequence analysis revealed that the CNGC specific domain "cyclic nucleotide-binding domain (CNBD)" comprises a "phosphate binding cassette" (PBC) and a "hinge" region that is highly conserved among the OsCNGCs. In addition, OsCNGC proteins also contain various other functional motifs and post-translational modification sites. We successively built a stringent motif: (LI-X(2)-[GS]-X-[FV]-X-G-[1]-ELL-X-W-X(12,22)-SA-X(2)-T-X(7)-[EQ]-AF-X-L) that recognizes the rice CNGCs specifically. Prediction of cis-acting regulatory elements in 5' upstream sequences and expression analyses through quantitative qPCR demonstrated that OsCNGC genes were highly responsive to multiple stimuli including hormonal (abscisic acid, indoleacetic acid, kinetin and ethylene), biotic (Pseudomonas fuscovaginae and Xanthomonas oryzae pv. oryzae) and abiotic (cold) stress. CONCLUSIONS: There are 16 CNGC genes in rice, which were probably expanded through chromosomal segmentation and tandem duplications and comprise a PBC and a "hinge" region in the CNBD domain, featured by a stringent motif. The various cis-acting regulatory elements in the upstream sequences may be responsible for responding to multiple stimuli, including hormonal, biotic and abiotic stresses.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Motivos de Aminoácidos , Sequência de Aminoácidos , Cromossomos de Plantas , Biologia Computacional , Canais de Cátion Regulados por Nucleotídeos Cíclicos/classificação , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Duplicação Gênica , Dados de Sequência Molecular , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Elementos Reguladores de Transcrição , Plântula/metabolismo , Alinhamento de Sequência , Transcriptoma
4.
World J Microbiol Biotechnol ; 30(2): 469-78, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23990042

RESUMO

Biological control efficacy of Brevibacillus laterosporus B4 associated with rice rhizosphere was assessed against bacterial brown stripe of rice caused by Acidovorex avenae subsp. avenae. A biochemical bactericide (chitosan) was used as positive control in this experiment. Result of in vitro analysis indicated that B. laterosporus B4 and its culture filtrates (70%; v/v) exhibited low inhibitory effects than chitosan (5 mg/ml). However, culture suspension of B. laterosporus B4 prepared in 1% saline solution presented significant ability to control bacterial brown stripe in vivo. Bacterization of rice seeds for 24 h yielded a greater response (71.9%) for controlling brown stripe in vivo than chitosan (56%). Studies on mechanisms revealed that B. laterosporus B4 suppressed the biofilm formation and severely disrupted cell membrane integrity of A. avenae subsp. avenae, causing the leakage of intracellular substances. In addition, the expression level of virulence-related genes in pathogen recovered from biocontrol-agent-treated plants showed that the genes responsible for biofilm formation, motility, niche adaptation, membrane functionality and virulence of A. avenae subsp. avenae were down-regulated by B. laterosporus B4 treatment. The biocontrol activity of B. laterosporus B4 was attributed to a substance with protein nature. This protein nature was shown by using ammonium sulfate precipitation and subsequent treatment with protease. The results obtained from this study showed the potential effectiveness of B. laterosporus B4 as biocontrol agent in control of bacterial brown stripe of rice.


Assuntos
Antibiose , Biofilmes/crescimento & desenvolvimento , Brevibacillus/fisiologia , Comamonadaceae/efeitos dos fármacos , Comamonadaceae/fisiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Brevibacillus/metabolismo , Locomoção/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Virulência/efeitos dos fármacos , Fatores de Virulência/antagonistas & inibidores
5.
Plant Physiol Biochem ; 206: 108232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091932

RESUMO

Carotenoids and their derivates play critical physiologic roles in plants. However, these substrates and their metabolism have not been elucidated in fruit of blueberry (Vaccinium corymbosum). In this study, carotenoids and ABA were investigated by LC-MS and their biosynthesis were subject to proteomic analysis during fruit ripening. Activity of CCD1 and NCED1/3 were studied in vivo or in vitro. Also, effects of ethephon and 1-MCP on biosynthesis of carotenoid and ABA were investigated through the expression of corresponding genes using qPCR. As a result, carotenoid biosynthesis was prominently mitigated whereas its metabolism was enhanced during fruit ripening, which resulted in a decrease in the carotenoids. VcCCD1 could both cleave ß-carotene, zeaxanthin and lutein at positions of 9, 10 (9', 10'), which was mainly responsible for the degradation of these carotenoids. Interestingly, in the situation of mitigation of carotenoid biosynthesis, ABA still rapidly accumulated, which was mainly attributed to the upregulated expression of VcNCED1/3. Notably, VcNCED1/3 also showed a cleavage activity of all-trans-zeaxanthin and a stereospecific cleavage activity of 9-cis-carotene to generate C15-carotenal. The C15-carotenal could be potentially converted to ABA through ZEP-independent ABA biosynthetic pathway during blueberry fruit ripening. Similar to a nature natural maturation, ethylene accelerated the carotenoid degradation and ABA biosynthesis trough downregulating the expression of genes in carotenoid biosynthesis and upregulating the expression of genes in ABA biosynthesis. These information help understand the regulation of carotenoids and ABA, and effects of ethylene on the regulation during blueberry fruit ripening.


Assuntos
Mirtilos Azuis (Planta) , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/metabolismo , Frutas/metabolismo , Proteômica , Zeaxantinas/metabolismo , Carotenoides/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Pathogens ; 10(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498266

RESUMO

Burkholderia glumae causes rice (Oryza sativa) bacterial panicle blight, which is an increasingly economically important disease worldwide. As the first B. glumae strain isolated from patients with chronic infections, AU6208 has been reported as an opportunistic clinic pathogen. However, our understanding of the molecular mechanism underlying human pathogenesis by B. glumae remains rudimentary. In this study, we report the complete genome sequence of the human-isolated B. glumae strain AU6208 and compare this to the genome of the rice-pathogenic B. glumae type strain LMG 2196T. Analysis of the average nucleotide identity demonstrated 99.4% similarity between the human- and plant-pathogenic strains. However, the phenotypic results from this study suggest a history of niche adaptation and divergence. In particular, we found 44 genes were predicted to be horizontally transferred into AU6208, and most of these genes were upregulated in conditions that mimic clinical conditions. In these, the gene pair sbnAB encodes key enzymes in antibiotic biosynthesis. These results suggest that horizontal gene transfer in AU6208 may be responsible for selective advantages in its pathogenicity in humans. Our analysis of the AU6208 genome and comparison with that of LMG 2196T reveal the evolutionary signatures of B. glumae in the process of switching niches from plants to humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA