Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 594(7863): 436-441, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079128

RESUMO

A delicate equilibrium of WNT agonists and antagonists in the intestinal stem cell (ISC) niche is critical to maintaining the ISC compartment, as it accommodates the rapid renewal of the gut lining. Disruption of this balance by mutations in the tumour suppressor gene APC, which are found in approximately 80% of all human colon cancers, leads to unrestrained activation of the WNT pathway1,2. It has previously been established that Apc-mutant cells have a competitive advantage over wild-type ISCs3. Consequently, Apc-mutant ISCs frequently outcompete all wild-type stem cells within a crypt, thereby reaching clonal fixation in the tissue and initiating cancer formation. However, whether the increased relative fitness of Apc-mutant ISCs involves only cell-intrinsic features or whether Apc mutants are actively involved in the elimination of their wild-type neighbours remains unresolved. Here we show that Apc-mutant ISCs function as bona fide supercompetitors by secreting WNT antagonists, thereby inducing differentiation of neighbouring wild-type ISCs. Lithium chloride prevented the expansion of Apc-mutant clones and the formation of adenomas by rendering wild-type ISCs insensitive to WNT antagonists through downstream activation of WNT by inhibition of GSK3ß. Our work suggests that boosting the fitness of healthy cells to limit the expansion of pre-malignant clones may be a powerful strategy to limit the formation of cancers in high-risk individuals.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Competição entre as Células , Genes APC , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Mutação , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/deficiência , Animais , Diferenciação Celular/genética , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Neoplasias Intestinais/metabolismo , Cloreto de Lítio/farmacologia , Masculino , Camundongos , Organoides/citologia , Organoides/metabolismo , Organoides/patologia , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
2.
Mol Cell ; 62(2): 272-283, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27151442

RESUMO

Expanded CAG repeats lead to debilitating neurodegenerative disorders characterized by aggregation of proteins with expanded polyglutamine (polyQ) tracts. The mechanism of aggregation involves primary and secondary nucleation steps. We show how a noncanonical member of the DNAJ-chaperone family, DNAJB6, inhibits the conversion of soluble polyQ peptides into amyloid fibrils, in particular by suppressing primary nucleation. This inhibition is mediated by a serine/threonine-rich region that provides an array of surface-exposed hydroxyl groups that bind to polyQ peptides and may disrupt the formation of the H bonds essential for the stability of amyloid fibrils. Early prevention of polyQ aggregation by DNAJB6 occurs also in cells and leads to delayed neurite retraction even before aggregates are visible. In a mouse model, brain-specific coexpression of DNAJB6 delays polyQ aggregation, relieves symptoms, and prolongs lifespan, pointing to DNAJB6 as a potential target for disease therapy and tool for unraveling early events in the onset of polyQ diseases.

3.
Mol Cell ; 37(3): 355-69, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20159555

RESUMO

Misfolding and aggregation are associated with cytotoxicity in several protein folding diseases. A large network of molecular chaperones ensures protein quality control. Here, we show that within the Hsp70, Hsp110, and Hsp40 (DNAJ) chaperone families, members of a subclass of the DNAJB family (particularly DNAJB6b and DNAJB8) are superior suppressors of aggregation and toxicity of disease-associated polyglutamine proteins. The antiaggregation activity is largely independent of the N-terminal Hsp70-interacting J-domain. Rather, a C-terminal serine-rich (SSF-SST) region and the C-terminal tail are essential. The SSF-SST region is involved in substrate binding, formation of polydisperse oligomeric complexes, and interaction with histone deacetylases (HDAC4, HDAC6, SIRT2). Inhibiting HDAC4 reduced DNAJB8 function. DNAJB8 is (de)acetylated at two conserved C-terminal lysines that are not involved in substrate binding, but do play a role in suppressing protein aggregation. Combined, our data provide a functional link between HDACs and DNAJs in suppressing cytotoxic protein aggregation.


Assuntos
Proteínas de Choque Térmico HSP40/fisiologia , Histona Desacetilases/fisiologia , Animais , Linhagem Celular , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/fisiologia , Resposta ao Choque Térmico , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Peptídeos/metabolismo , Deficiências na Proteostase/metabolismo , Xenopus laevis
4.
EMBO Mol Med ; 14(12): e16194, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36321561

RESUMO

The majority of colorectal cancers (CRCs) present with early mutations in tumor suppressor gene APC. APC mutations result in oncogenic activation of the Wnt pathway, which is associated with hyperproliferation, cytoskeletal remodeling, and a global increase in mRNA translation. To compensate for the increased biosynthetic demand, cancer cells critically depend on protein chaperones to maintain proteostasis, although their function in CRC remains largely unexplored. In order to investigate the role of molecular chaperones in driving CRC initiation, we captured the transcriptomic profiles of murine wild type and Apc-mutant organoids during active transformation. We discovered a strong transcriptional upregulation of Hspb1, which encodes small heat shock protein 25 (HSP25). We reveal an indispensable role for HSP25 in facilitating Apc-driven transformation, using both in vitro organoid cultures and mouse models, and demonstrate that chemical inhibition of HSP25 using brivudine reduces the development of premalignant adenomas. These findings uncover a hitherto unknown vulnerability in intestinal transformation that could be exploited for the development of chemopreventive strategies in high-risk individuals.


Assuntos
Transcriptoma , Animais , Camundongos , Regulação para Cima
5.
Sci Rep ; 6: 34830, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713507

RESUMO

Parkinson's disease is one of the most common neurodegenerative disorders and several mutations in different genes have been identified to contribute to the disease. A loss of function parkin RING1 domain mutant (C289G) is associated with autosomal-recessive juvenile-onset Parkinsonism (AR-JP) and displays altered solubility and sequesters into aggregates. Single overexpression of almost each individual member of the Hsp40 (DNAJ) family of chaperones efficiently reduces parkin C289G aggregation and requires interaction with and activity of endogenously expressed Hsp70 s. For DNAJB6 and DNAJB8, potent suppressors of aggregation of polyglutamine proteins for which they rely mainly on an S/T-rich region, it was found that the S/T-rich region was dispensable for suppression of parkin C289G aggregation. Our data implies that different disease-causing proteins pose different challenges to the protein homeostasis system and that DNAJB6 and DNAJB8 are highly versatile members of the DNAJ protein family with multiple partially non-overlapping modes of action with respect to handling disease-causing proteins, making them interesting potential therapeutic targets.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Mutação , Ubiquitina-Proteína Ligases/genética , Substituição de Aminoácidos , Células HEK293 , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/genética , Domínios Proteicos , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
6.
Dis Model Mech ; 7(4): 421-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24719117

RESUMO

There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR)--and thus generally restoring the disturbed protein homeostasis associated with such diseases--has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or 'barcoded' by a different set of HSPs that can rescue specific types of aggregation. Some of these 'non-canonical' HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated--so-called chaperonopathies--which are also discussed in this Review.


Assuntos
Doença , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Animais , Humanos , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia
7.
Cell Stress Chaperones ; 19(2): 227-39, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23904097

RESUMO

Expanded polyglutamine (polyQ) stretches lead to protein aggregation and severe neurodegenerative diseases. A highly efficient suppressor of polyQ aggregation was identified, the DNAJB6, when molecular chaperones from the HSPH, HSPA, and DNAJ families were screened for huntingtin exon 1 aggregation in cells (Hageman et al. in Mol Cell 37(3):355-369, 2010). Furthermore, also aggregation of polyQ peptides expressed in cells was recently found to be efficiently suppressed by co-expression of DNAJB6 (Gillis et al. in J Biol Chem 288:17225-17237, 2013). These suppression effects can be due to an indirect effect of DNAJB6 on other cellular components or to a direct interaction between DNAJB6 and polyQ peptides that may depend on other cellular components. Here, we have purified the DNAJB6 protein to investigate the suppression mechanism. The purified DNAJB6 protein formed large heterogeneous oligomers, in contrast to the more canonical family member DNAJB1 which is dimeric. Purified DNAJB6 protein, at substoichiometric molar ratios, efficiently suppressed fibrillation of polyQ peptides with 45°Q in a thioflavin T fibrillation. No suppression was obtained with DNAJB1, but with the closest homologue to DNAJB6, DNAJB8. The suppression effect was independent of HSPA1 and ATP. These data, based on purified proteins and controlled fibrillation in vitro, strongly suggest that the fibrillation suppression is due to a direct protein-protein interaction between the polyQ peptides and DNAJB6 and that the DNAJB6 has unique fibrillation suppression properties lacking in DNAJB1. Together, the data obtained in cells and in vitro support the view that DNAJB6 is a peptide-binding chaperone that can interact with polyQ peptides that are incompletely degraded by and released from the proteasome.


Assuntos
Amiloide/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Amiloide/ultraestrutura , Proteínas de Choque Térmico HSP40/química , Humanos , Luz , Chaperonas Moleculares/química , Dados de Sequência Molecular , Peso Molecular , Proteínas do Tecido Nervoso/química , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento de Radiação , Dodecilsulfato de Sódio/farmacologia , Solubilidade
8.
PLoS One ; 9(4): e92408, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24691167

RESUMO

The Copper Metabolism MURR1 domain protein 1 (COMMD1) is a protein involved in multiple cellular pathways, including copper homeostasis, NF-κB and hypoxia signalling. Acting as a scaffold protein, COMMD1 mediates the levels, stability and proteolysis of its substrates (e.g. the copper-transporters ATP7B and ATP7A, RELA and HIF-1α). Recently, we established an interaction between the Cu/Zn superoxide dismutase 1 (SOD1) and COMMD1, resulting in a decreased maturation and activation of SOD1. Mutations in SOD1, associated with the progressive neurodegenerative disorder Amyotrophic Lateral Sclerosis (ALS), cause misfolding and aggregation of the mutant SOD1 (mSOD1) protein. Here, we identify COMMD1 as a novel regulator of misfolded protein aggregation as it enhances the formation of mSOD1 aggregates upon binding. Interestingly, COMMD1 co-localizes to the sites of mSOD1 inclusions and forms high molecular weight complexes in the presence of mSOD1. The effect of COMMD1 on protein aggregation is client-specific as, in contrast to mSOD1, COMMD1 decreases the abundance of mutant Parkin inclusions, associated with Parkinson's disease. Aggregation of a polyglutamine-expanded Huntingtin, causative of Huntington's disease, appears unaltered by COMMD1. Altogether, this study offers new research directions to expand our current knowledge on the mechanisms underlying aggregation disease pathologies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Agregados Proteicos , Dobramento de Proteína , Esclerose Lateral Amiotrófica/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Peso Molecular , Proteínas Mutantes/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
9.
Curr Top Med Chem ; 12(22): 2479-90, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23339302

RESUMO

Many neurodegenerative diseases are late onset diseases, associated with aggregation of proteins, implying that aged cells are more susceptible to proteotoxic stress. It is known that with aging, there is a decline in the functionality of chaperone networks and on the other hand, accumulation of damaged proteins occurs. Together, this has a cumulative effects on cellular protein homeostasis. Several studies have revealed that availability of DNAJ proteins, the co-chaperones to the Hsp70 machine, could be a rate-limiting factor in handling diseased proteins within the cell. In this review,we highlight how DNAJ proteins can affect aggregation of disease-causing proteins, if and how this depends on their function as Hsp70 co-chaperones, and how much this depends on the type of protein causing the disease. Finally, we will discuss the five known degenerative diseases that are linked to mutations in individual DNAJ members and what mechanism may underlie these DNAJ chaperonopathies.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Camundongos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Doenças Neurodegenerativas/genética , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA