Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Thorax ; 78(9): 922-932, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36823163

RESUMO

RATIONALE: Vaping has become a popular method of inhaling various psychoactive substances. While evaluating respiratory effects of vaping have primarily focused on nicotine-containing products, cannabidiol (CBD)-vaping is increasingly becoming popular. It currently remains unknown whether the health effects of vaping nicotine and cannabinoids are similar. OBJECTIVES: This study compares side by side the pulmonary effects of acute inhalation of vaporised CBD versus nicotine. METHODS: In vivo inhalation study in mice and in vitro cytotoxicity experiments with human cells were performed to assess the pulmonary damage-inducing effects of CBD or nicotine aerosols emitted from vaping devices. MEASUREMENTS AND MAIN RESULTS: Pulmonary inflammation in mice was scored by histology, flow cytometry, and quantifying levels of proinflammatory cytokines and chemokines. Lung damage was assessed by histology, measurement of myeloperoxidase activity and neutrophil elastase levels in the bronchoalveolar lavage fluid and lung tissue. Lung epithelial/endothelial integrity was assessed by quantifying BAL protein levels, albumin leak and pulmonary FITC-dextran leak. Oxidative stress was determined by measuring the antioxidant potential in the BAL and lungs. The cytotoxic effects of CBD and nicotine aerosols on human neutrophils and human small airway epithelial cells were evaluated using in vitro air-liquid interface system. Inhalation of CBD aerosol resulted in greater inflammatory changes, more severe lung damage and higher oxidative stress compared with nicotine. CBD aerosol also showed higher toxicity to human cells compared with nicotine. CONCLUSIONS: Vaping of CBD induces a potent inflammatory response and leads to more pathological changes associated with lung injury than vaping of nicotine.


Assuntos
Canabidiol , Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Humanos , Camundongos , Animais , Nicotina/toxicidade , Canabidiol/farmacologia , Vaping/efeitos adversos , Aerossóis e Gotículas Respiratórios , Pulmão/patologia , Antioxidantes/farmacologia
2.
Respir Res ; 24(1): 261, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907902

RESUMO

RATIONALE: Due to the relatively short existence of alternative tobacco products, gaps exist in our current understanding of their long-term respiratory health effects. We therefore undertook the first-ever side-by-side comparison of the impact of chronic inhalation of aerosols emitted from electronic cigarettes (EC) and heated tobacco products (HTP), and combustible cigarettes (CC) smoke. OBJECTIVES: To evaluate the potential differential effects of alternative tobacco products on lung inflammatory responses and efficacy of vaccination in comparison to CC. METHODS: Mice were exposed to emissions from EC, HTP, CC, or air for 8 weeks. BAL and lung tissue were analyzed for markers of inflammation, lung damage, and oxidative stress. Another group was exposed for 12 weeks and vaccinated and challenged with a bacterial respiratory infection. Antibody titers in BAL and sera and pulmonary bacterial clearance were assessed. MAIN RESULTS: EC- and HTP-aerosols significantly augmented lung immune cell infiltrates equivalent to that achieved following CC-exposure. HTP and CC significantly increased neutrophil numbers compared to EC. All products augmented numbers of B cells, T cells, and pro-inflammatory IL17A+ T cells in the lungs. Decreased lung antioxidant activity and lung epithelial and endothelial damage was induced by all products. EC and HTP differentially augmented inflammatory cytokines/chemokines in the BAL. Generation of immunity following vaccination was impaired by EC and HTP but to a lesser extent than CC, with a CC > HTP > EC hierarchy of suppression of pulmonary bacterial clearance. CONCLUSIONS: HTP and EC-aerosols induced a proinflammatory pulmonary microenvironment, lung damage, and suppressed efficacy of vaccination.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Camundongos , Animais , Aerossóis e Gotículas Respiratórios , Produtos do Tabaco/efeitos adversos , Aerossóis
3.
J Immunol ; 206(6): 1348-1360, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33558371

RESUMO

Cigarette smoke is a potent proinflammatory trigger contributing to acute lung injury and the development of chronic lung diseases via mechanisms that include the impairment of inflammation resolution. We have previously demonstrated that secondhand smoke (SHS) exposure exacerbates bacterial infection-induced pulmonary inflammation and suppresses immune responses. It is now recognized that resolution of inflammation is a bioactive process mediated by lipid-derived specialized proresolving mediators that counterregulate proinflammatory signaling and promote resolution pathways. We therefore hypothesized that proresolving mediators could reduce the burden of inflammation due to chronic lung infection following SHS exposure and restore normal immune responses to respiratory pathogens. To address this question, we exposed mice to SHS followed by chronic infection with nontypeable Haemophilus influenzae (NTHI). Some groups of mice were treated with aspirin-triggered resolvin D1 (AT-RvD1) during the latter half of the smoke exposure period or during a period of smoking cessation and before infection. Treatment with AT-RvD1 markedly reduced the recruitment of neutrophils, macrophages, and T cells in lung tissue and bronchoalveolar lavage and levels of proinflammatory cytokines in the bronchoalveolar lavage. Additionally, treatment with AT-RvD1 improved Ab titers against the NTHI outer membrane lipoprotein Ag P6 following infection. Furthermore, treatment with AT-RvD1 prior to classically adjuvanted immunization with P6 increased Ag-specific Ab titers, resulting in rapid clearance of NTHI from the lungs after acute challenge. Collectively, we have demonstrated that AT-RvD1 potently reverses the detrimental effects of SHS on pulmonary inflammation and immunity and thus could be beneficial in reducing lung injury associated with smoke exposure and infection.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Infecções por Haemophilus/tratamento farmacológico , Pneumonia/tratamento farmacológico , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/uso terapêutico , Feminino , Infecções por Haemophilus/sangue , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/imunologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Pneumonia/sangue , Pneumonia/imunologia , Pneumonia/microbiologia
4.
J Immunol ; 205(11): 3205-3217, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115852

RESUMO

Tobacco smoke exposure is associated with multiple diseases including, respiratory diseases like asthma and chronic obstructive pulmonary disease. Tobacco smoke is a potent inflammatory trigger and is immunosuppressive, contributing to increased susceptibility to pulmonary infections in smokers, ex-smokers, and vulnerable populations exposed to secondhand smoke. Tobacco smoke exposure also reduces vaccine efficacy. Therefore, mitigating the immunosuppressive effects of chronic smoke exposure and improving the efficacy of vaccinations in individuals exposed to tobacco smoke, is a critical unmet clinical problem. We hypothesized that specialized proresolving mediators (SPMs), a class of immune regulators promoting resolution of inflammation, without being immunosuppressive, and enhancing B cell Ab responses, could reverse the immunosuppressive effects resulting from tobacco smoke exposure. We exposed mice to secondhand smoke for 8 wk, followed by a period of smoke exposure cessation, and the mice were immunized with the P6 lipoprotein from nontypeable Haemophilus influenzae, using 17-HDHA and aspirin-triggered-resolvin D1 (AT-RvD1) as adjuvants. 17-HDHA and AT-RvD1 used as adjuvants resulted in elevated serum and bronchoalveolar lavage levels of anti-P6-specific IgG and IgA that were protective, with immunized mice exhibiting more rapid bacterial clearance upon challenge, reduced pulmonary immune cell infiltrates, reduced production of proinflammatory cytokines, and less lung-epithelial cell damage. Furthermore, the treatment of mice with AT-RvD1 during a period of smoke-cessation further enhanced the efficacy of SPM-adjuvanted P6 vaccination. Overall, SPMs show promise as novel vaccine adjuvants with the ability to overcome the tobacco smoke-induced immunosuppressive effects.


Assuntos
Tolerância Imunológica/imunologia , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Anticorpos/imunologia , Aspirina/imunologia , Asma/imunologia , Asma/microbiologia , Linfócitos B/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/imunologia , Ácidos Docosa-Hexaenoicos/imunologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Feminino , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Lipoproteínas/imunologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/imunologia , Pneumonia/microbiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/microbiologia
5.
Cell Immunol ; 361: 104280, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33445053

RESUMO

Myeloid derived suppressor cells (MDSC) are a heterogenous population of immature myeloid cells that accumulate in tumor bearing host and migrate to lymphoid organs and tumor tissues. This process is controlled by a set of defined pro-inflammatory cytokines and chemokines, which are upregulated in malignancies. MDSC have strong immunosuppressive potential and constitute a major component of the tumor microenvironment (TME). Tumor cells take advantage of the suppressive mechanisms of MDSC to establish an immunosuppressive TME which inhibits antitumor immune responses thereby promoting cancer progression. An immunosuppressive TME acts as a significant barrier to immunotherapeutic interventions. Pre-clinical and clinical studies have demonstrated that enrichment and activation of MDSC is correlated with tumor progression, recurrence and metastasis. In this review we discuss the potential impact of MDSC on tumor progression and its role as a biomarker of prognostic significance in cancer with a special focus on hepatocellular cancer (HCC).


Assuntos
Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neoplasias/imunologia , Animais , Biomarcadores Tumorais/imunologia , Carcinoma Hepatocelular/imunologia , Quimiocinas/imunologia , Citocinas/imunologia , Progressão da Doença , Humanos , Terapia de Imunossupressão , Neoplasias Hepáticas/imunologia , Células Mieloides/imunologia , Células Supressoras Mieloides/fisiologia , Recidiva Local de Neoplasia/imunologia , Microambiente Tumoral/imunologia
6.
Nicotine Tob Res ; 23(7): 1160-1167, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33346355

RESUMO

INTRODUCTION: Emerging heated tobacco products (HTPs) were designed to reduce exposure to toxicants from cigarette smoke (CS) by avoiding burning tobacco and instead heating tobacco. We studied the effects of short-term inhalation of aerosols emitted from HTP called IQOS, on lung damage and immune-cell recruitment to the lungs in mice. METHODS: Numerous markers of lung damage and inflammation including albumin and lung immune-cell infiltrates, proinflammatory cytokines, and chemokines were quantified in lungs and bronchoalveolar (BAL) fluid from IQOS, CS, or air-exposed (negative control) mice. RESULTS: Importantly, as a surrogate marker of lung epithelial-cell damage, we detected significantly increased levels of albumin in the BAL fluid of both HTP- and CS-exposed mice compared with negative controls. Total numbers of leukocytes infiltrating the lungs were equivalent following both IQOS aerosols and CS inhalation and significantly increased compared with air-exposed controls. We also observed significantly increased numbers of CD4+IL-17A+ T cells, a marker of a T-cell immune response, in both groups compared with air controls; however, numbers were the highest following CS exposure. Finally, the numbers of CD4+RORγt+ T cells, an inflammatory T-cell subtype expressing the transcription factor that is essential for promoting differentiation into proinflammatory Th17 cells, were significantly augmented in both groups compared with air-exposed controls. Levels of several cytokines in BAL were significantly elevated, reflecting a proinflammatory milieu. CONCLUSIONS: Our study demonstrates that short-term inhalation of aerosols from IQOS generates damage and proinflammatory changes in the lung that are substantially similar to that elicited by CS exposure. IMPLICATIONS: Exposure of mice to IQOS, one of the candidate modified-risk tobacco products, induces inflammatory immune-cell accumulation in the lungs and augments the levels of proinflammatory cytokines and chemokines in the BAL fluid. Such an exacerbated pulmonary proinflammatory microenvironment is associated with lung epithelial-cell damage in IQOS-exposed mice, suggesting a potential association with the impairment of lung function.


Assuntos
Produtos do Tabaco , Aerossóis , Animais , Pulmão , Camundongos , Fumaça/efeitos adversos , Nicotiana , Produtos do Tabaco/toxicidade
7.
J Immunol ; 200(8): 2927-2940, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29555783

RESUMO

Despite advocacy to reduce smoking-related diseases, >1 billion people worldwide continue to smoke. Smoking is immunosuppressive and an important etiological factor in the development of several human disorders including respiratory diseases like chronic obstructive pulmonary disease. However, there is a critical gap in the knowledge of the role of secondhand smoke (SHS) in inflammation and immunity. We therefore studied the influence of SHS on pulmonary inflammation and immune responses to respiratory infection by nontypeable Haemophilus influenzae (NTHI) recurrently found in chronic obstructive pulmonary disease patients. Chronic SHS-exposed mice were chronically infected with NTHI and pulmonary inflammation was evaluated by histology. Immune cell numbers and cytokines were measured by flow cytometry and ELISA, respectively. Chronic SHS exposure impaired NTHI P6 Ag-specific B and T cell responses following chronic NTHI infection as measured by ELISPOT assays, reduced the production of Abs in serum and bronchoalveolar lavage, and enhanced albumin leak into the bronchoalveolar lavage as determined by ELISA. Histopathological examination of lungs revealed lymphocytic accumulation surrounding airways and bronchovasculature following chronic SHS exposure and chronic infection. Chronic SHS exposure enhanced the levels of inflammatory cytokines IL-17A, IL-6, IL-1ß, and TNF-α in the lungs, and impaired the generation of adaptive immunity following either chronic infection or P6 vaccination. Chronic SHS exposure diminished bacterial clearance from the lungs after acute NTHI challenge, whereas P6 vaccination improved clearance equivalent to the level seen in air-exposed, non-vaccinated mice. Our study provides unequivocal evidence that SHS exposure has long-term detrimental effects on the pulmonary inflammatory microenvironment and immunity to infection and vaccination.


Assuntos
Infecções por Haemophilus/imunologia , Inflamação/imunologia , Infecções Respiratórias/imunologia , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Haemophilus influenzae , Inflamação/induzido quimicamente , Camundongos
9.
Cancer Immunol Immunother ; 65(7): 813-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26910314

RESUMO

A bottleneck for immunotherapy of cancer is the immunosuppressive microenvironment in which the tumor cells are located. Regardless of the fact that large numbers of tumor-specific T cells can be generated in patients by active immunization or adoptive transfer, these T cells do not readily translate to tumor cell killing in vivo. The immune regulatory mechanism that prevents autoimmunity may be harnessed by tumor cells for the evasion of immune destruction. Regulatory T cells, myeloid-derived suppressor cells, inhibitory cytokines and immune checkpoint receptors are the major components of the immune system acting in concert with causing the subversion of anti-tumor immunity in the tumor microenvironment. This redundant immunosuppressive network may pose an impediment to efficacious immunotherapy, thus facilitating tumor progression. Cancer progression clearly documents the failure of immune control over relentless growth of tumor cells. Detailed knowledge of each of these factors responsible for creating an immunosuppressive shield to protect tumor cells from immune destruction is essential for the development of novel immune-based therapeutic interventions of cancer. Multipronged targeted depletion of these suppressor cells may restore production of granzyme B by CD8(+) T cells and increase the number of IFN-γ-producing CD4(+) T cells.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Humanos , Linfócitos T Reguladores/imunologia , Microambiente Tumoral
10.
Am J Respir Crit Care Med ; 190(1): 40-50, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24825462

RESUMO

RATIONALE: Previous studies from our laboratory have shown that peripheral blood mononuclear cells (PBMCs) from patients with chronic obstructive pulmonary disease (COPD) prone to exacerbations with nontypeable Haemophilus influenzae have impaired responses to lipoprotein P6. We hypothesized that an underlying immunosuppressive network could be responsible for the defective antibacterial immunity observed in these patients. We evaluated T regulatory cells (Tregs), myeloid-derived suppressor cells (MDSC), and exhausted T effector cells (programmed death 1 [PD-1](+)) in patients with COPD, because these cells are known to play a pivotal role in suppressing immune responses. OBJECTIVES: We performed an in-depth characterization of Tregs, T effector cells, and MDSC in COPD and correlated their levels and function with disease severity. METHODS: Treg, effector T cell, and MDSC frequency from patients with COPD and healthy subjects' PBMCs were analyzed by flow cytometry. Treg immunosuppressive capacity was measured by in vitro suppression assay. The frequency of interferon-γ producing T cells and T-cell proliferation were measured after blocking CTLA-4 and PD-1. Plasma proinflammatory and immunosuppressive cytokine levels were measured. MEASUREMENTS AND MAIN RESULTS: Significantly increased levels of Tregs, MDSC, and PD-1(+) exhausted effector T cells were present in patients with COPD compared with healthy subjects. Tregs from patients with COPD suppressed P6-specific T-cell proliferation to a greater extent than Tregs from healthy subjects. Plasma levels of Treg-generated cytokines, IL-10, and transforming growth factor-ß were elevated. Blockade of CTLA-4 resulted in significant augmentation of T-cell IFN-γ production in patients with COPD. CONCLUSIONS: Functionally suppressive Tregs, MDSCs, and exhausted PD-1(+) T cells contribute to effector T-cell dysfunction in COPD.


Assuntos
Apoptose/imunologia , Tolerância Imunológica/imunologia , Células Mieloides/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Linfócitos T Reguladores/imunologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Citocinas/análise , Progressão da Doença , Feminino , Volume Expiratório Forçado/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Índice de Gravidade de Doença , Fumar/efeitos adversos
11.
Cells ; 10(6)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071188

RESUMO

Natural killer (NK) cells account for 25-50% of the total number of hepatic lymphocytes, which implicates that NK cells play an important role in liver immunity. The frequencies of both circulating and tumor infiltrating NK cells are positively correlated with survival benefit in hepatocellular cancer (HCC) and have prognostic implications, which suggests that functional impairment in NK cells and HCC progression are strongly associated. In HCC, T cell exhaustion is accompanied by the interaction between immune checkpoint ligands and their receptors on tumor cells and antigen presenting cells (APC). Immune checkpoint inhibitors (ICIs) have been shown to interfere with this interaction and have altered the therapeutic landscape of multiple cancer types including HCC. Immunotherapy with check-point inhibitors, aimed at rescuing T-cells from exhaustion, has been applied as first-line therapy for HCC. NK cells are the first line effectors in viral hepatitis and play an important role by directly eliminating virus infected cells or by activating antigen specific T cells through IFN-γ production. Furthermore, chimeric antigen receptor (CAR)-engineered NK cells and T cells offer unique opportunities to create CAR-NK with multiple specificities learning from the experience gained with CAR-T cells with potentially less adverse effects. This review focus on the abnormalities of NK cells, T cells, and their functional impairment in patients with chronic viral hepatitis, which contributes to progression to hepatic malignancy. Furthermore, we discuss and summarize recent advances in the NK cell and T cell based immunotherapeutic approaches in HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite Viral Humana , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neoplasias Hepáticas , Linfócitos T/imunologia , Animais , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Linhagem Celular , Hepatite Viral Humana/imunologia , Hepatite Viral Humana/terapia , Humanos , Células Matadoras Naturais/citologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Linfócitos T/citologia
12.
Immunol Invest ; 39(4-5): 468-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20450287

RESUMO

Oral vaccines offer significant advantages over needle-based vaccines for achieving universal childhood vaccination goals. The expression of vaccine antigens in transgenic plants has the potential to provide a convenient, safe approach for oral vaccination and thus a feasible alternative to traditional parenteral vaccines. Many developments in the field have ushered in improvements such as enhanced protein antigen expression for the use of plants as factories for vaccine production, and facilitated studies pertaining to immunogenicity of candidate vaccines. Oral delivery of plant-based vaccines offers the benefit of antigen protection within the harsh intestinal environment. Within the gut, mucosal immune cells are poised to respond to pathogens, but can also be exploited to elicit protective immune responses to oral vaccines. Inclusion of mucosal adjuvants during immunization with the vaccine antigen has been an important step towards the success of plant-based vaccines. This review discusses the mechanisms that control mucosal immune responses and highlights some of the studies and the results achieved following immunization with transgenic plants.


Assuntos
Plantas Geneticamente Modificadas , Vacinas/biossíntese , Administração Oral , Animais , Humanos , Imunidade nas Mucosas/imunologia , Vacinas/administração & dosagem , Vacinas/imunologia
13.
Oncoimmunology ; 9(1): 1824863, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33101775

RESUMO

The immune modulatory effect of tivozanib, a tyrosine kinase inhibitor, and the underlying immune mechanisms impacting survival of HCC patients have not been investigated. Pre-clinical studies have shown that tivozanib reduces Tregs and MDSCs accumulation through inhibition of c-Kit/SCF axis. We rationalized that c-Kit/SCF axis antagonism by tivozanib may reverse tumor-induced immune suppression in HCC patients. The frequency of circulating Tregs, MDSCs, CTLA-4+Tregs, PD-1+T cells, c-Kit+pERK-2+Tregs, and c-Kit+pERK-2+MDSCs were quantified in HCC patients at baseline and two time points during tivozanib treatment. We report for the first time that reduction in Tregs after tivozanib treatment and increased levels of baseline CD4+PD-1+T cells correlated with significant improvement in overall survival (OS) of the patients and these signatures may be potential biomarkers of prognostic significance. This immune modulation resulted from tivozanib-mediated blockade of c-Kit/SCF signaling, impacting ERK2 phosphorylation on Tregs and MDSCs. Low pre-treatment CD4+T cells: Treg ratio and reduction in the frequencies of Foxp3+c-Kit+pERK+Tregs after tivozanib treatment correlated significantly with progression free survival. In a comparative analysis of tivozanib vs sorafenib treatment in HCC patients, we demonstrate that decrease in the baseline numbers or frequencies of Foxp3+Tregs, MDSCs and exhausted T cells was significantly greater following tivozanib treatment. Additionally, greater increase in CD4+T cell: Treg ratio after tivozanib treatment was associated with significant improvement in OS compared to sorafenib treatment, highlighting the greater efficacy of tivozanib. These insights may help identify patients who likely would benefit from c-Kit/SCF antagonism and inform efforts to improve the efficacy of tivozanib in combination with immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Supressoras Mieloides , Quinolinas , Humanos , Compostos de Fenilureia , Quinolinas/farmacologia
14.
JCI Insight ; 4(15)2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31391334

RESUMO

BACKGROUNDSorafenib has been shown to reduce the extent of immunosuppression in patients with hepatocellular carcinoma (HCC). The rationale of this investigation was to identify biomarkers that can predict treatment efficacy of sorafenib in HCC patients and to unravel the mechanism by which sorafenib impedes immune suppression mediated by distinct immunosuppressive cell subsets.METHODSWith informed consent, blood samples were collected from 30 patients with advanced HCC, at baseline and 2 time points after initiation of sorafenib treatment. The frequency of PD-1+ T cells, ERK2 phosphorylation on flt-3+ Tregs and MDSCs, and T effector cell function were quantified by using flow cytometry.RESULTSElevated levels of CD8+Ki67+ T cells producing IFN-γ were associated with improved progression-free survival and overall survival (OS). High frequencies of these T cells were correlated with significantly reduced risk of death over time. Patients with an increased pretreatment T effector/Treg ratio showed significant improvement in OS. ERK+flt-3+ Tregs and MDSCs were significantly decreased after sorafenib therapy. Increased numbers of baseline flt-3+p-ERK+ MDSCs were associated with survival benefit of patients.CONCLUSIONA high baseline CD4+ T effector/Treg ratio is a potential biomarker of prognostic significance in HCC. CD8+Ki67+ T cells producing IFN-γ are a key biomarker of response to sorafenib therapy resulting in survival benefit. The immune modulation resulted from sorafenib-mediated blockade of signaling through the VEGF/VEGFR/flt-3 pathway, affecting ERK phosphorylation. These insights may help identify patients who likely would benefit from VEGFR antagonism and inform efforts to improve the efficacy of sorafenib in combination with immunotherapy.TRIAL REGISTRATIONNCT02072486.FUNDINGNational Comprehensive Cancer Network Oncology Research Program from general research support provided by Bayer US LLC (NCCNSORA0002), National Cancer Institute grant P30CA016056, and pilot funds from Roswell Park Alliance Foundation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/uso terapêutico , Administração Oral , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/mortalidade , Feminino , Humanos , Interferon gama/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Sorafenibe/farmacologia
15.
Oncoimmunology ; 5(10): e1226718, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853648

RESUMO

Sorafenib is an oral anti-angiogenic multi-kinase inhibitor used for systemic therapy in patients with advanced hepatocellular carcinoma (HCC) who are not suitable candidates for surgery or liver transplantation. An earlier study conducted with HCC tumor tissue suggested that ERK phosphorylation (pERK), a downstream target of sorafenib, may serve as a potential biomarker for therapeutic efficacy of sorafenib. However, no study thus far has utilized a minimal invasive procedure to predict HCC patient responsiveness to sorafenib. We evaluated the biomarker utility of circulating endothelial progenitor cells (EPCs) frequency and intracellular pERK levels in EPCs in peripheral blood obtained pre- and post-sorafenib therapy or after transarterial chemoembolistaion (TACE). A statistically significant reduction in the level of ERK phosphorylation and in the absolute number of EPCs was detected following in vivo sorafenib treatment (p < 0 .01 for both). In contrast, the decrease in the level of ERK phosphorylation and EPC number was either marginally significant or insignificant in patients treated with TACE (p = 0.05 and 0.06, respectively). In vitro sorafenib treatment of pre- and post-samples from the same patient cohort inhibited ERK phosphorylation levels in EPCs and decreased the number of EPCs at all doses tested (p = 0.01). Our findings support that the evaluation of both the circulating EPC frequency and the level of ERK phosphorylation in EPCs may serve as potential non-invasive biomarkers of sorafenib efficacy, both as predictor of treatment outcome and efficacy during drug treatment.

16.
JCI Insight ; 1(11)2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27540594

RESUMO

BACKGROUND: Sorafenib is an oral antiangiogenic agent administered in advanced-stage hepatocellular carcinoma (HCC). Based on preclinical and human studies, we hypothesized that, in addition to its antiangiogenic properties, sorafenib may beneficially reduce the extent of the immunosuppressive network in HCC patients. To test this hypothesis, we examined whether alterations in the immunosuppressive burden of advanced-stage HCC patients correlated with clinical outcome. METHODS: In before and after sorafenib treatment, blood samples collected from 19 patients with advanced HCC, the frequency of PD-1+ T cells, Tregs, and myeloid derived suppressor cells (MDSC) were quantified by multiparameter FACS. Cytokine levels in plasma were determined by ELISA. RESULTS: Overall survival (OS) was significantly impacted by the reduction in the absolute number of both CD4+PD-1+ T cells and CD8+PD-1+ T cells following sorafenib treatment. Significant decreases in the frequency and absolute number of Foxp3+ Tregs were also observed, and a statistically significant improvement in OS was noted in patients exhibiting a greater decrease in the number of Foxp3+ Tregs. The ratio of CD4+CD127+PD-1- T effector cells to CD4+Foxp3+PD-1+ Tregs was significantly increased following treatment with sorafenib. Increased frequency of CD4+CD127+ T effector cells in the posttreatment samples significantly correlated with OS. CONCLUSION: This study is the first to our knowledge to demonstrate the potent immunomodulatory effects of sorafenib therapy on PD-1+ T cells and Tregs and the ensuing correlation with survival. These phenotypes could serve as predictive biomarkers to identify HCC patients who are likely to benefit from sorafenib treatment. TRIAL REGISTRATION: Registration is not required for observational studies. FUNDING: This study was supported by NCI Core Grant to RPCI (NIH P30 CA016056) and discretionary funds to Y. Thanavala.

17.
Ann Am Thorac Soc ; 12 Suppl 2: S169-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26595735

RESUMO

Chronic obstructive pulmonary disease (COPD) is a complex chronic disease. Chronic inflammation is the hallmark of COPD, involving the interplay of a wide variety of cells in the lung microenvironment. Cigarette smoke (CS) induces chronic lung inflammation and is considered a key etiological factor in the development and pathogenesis of COPD. Structural and inflammatory cells in the lung respond to CS exposure by releasing proinflammatory mediators that recruit additional inflammatory immune cells, which collectively contribute to the establishment of a chronic inflammatory microenvironment. Chronic inflammation contributes to lung damage, compromises innate and adaptive immune responses, and facilitates the recurrent episodes of respiratory infection that punctuate and further contribute to the pathological manifestations of the stable disease. A number of studies support the conclusion that immune dysfunction leads to exacerbations and disease severity in COPD. Our group has clearly demonstrated that CS exacerbates lung inflammation and compromises immunity to respiratory pathogens in a mouse model of COPD. We have also investigated the phenotype of immune cells in patients with COPD compared with healthy control subjects and found extensive immune dysfunction due to the presence and functional activity of T regulatory cells, CD4(+)PD-1(+) exhausted effector T cells and myeloid-derived suppressor cells. Manipulation of these immunosuppressive networks in COPD could provide a rational strategy to restore functional immune responses, reduce exacerbations, and improve lung function. In this review, we discuss the role of immune dysfunction in COPD that may contribute to recurrent respiratory infections and disease severity.


Assuntos
Imunidade Adaptativa , Inflamação/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar/imunologia , Linfócitos T Reguladores/imunologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Imunidade Inata , Camundongos
18.
Cancer Res ; 73(8): 2435-44, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23423978

RESUMO

The extent to which T-cell-mediated immune surveillance is impaired in human cancer remains a question of major importance, given its potential impact on the development of generalized treatments of advanced disease where the highest degree of heterogeneity exists. Here, we report the first global analysis of immune dysfunction in patients with advanced hepatocellular carcinoma (HCC). Using multi-parameter fluorescence-activated cell sorting analysis, we quantified the cumulative frequency of regulatory T cells (Treg), exhausted CD4(+) helper T cells, and myeloid-derived suppressor cells (MDSC) to gain concurrent views on the overall level of immune dysfunction in these inoperable patients. We documented augmented numbers of Tregs, MDSC, PD-1(+)-exhausted T cells, and increased levels of immunosuppressive cytokines in patients with HCC, compared with normal controls, revealing a network of potential mechanisms of immune dysregulation in patients with HCC. In dampening T-cell-mediated antitumor immunity, we hypothesized that these processes may facilitate HCC progression and thwart the efficacy of immunotherapeutic interventions. In testing this hypothesis, we showed that combined regimens to deplete Tregs, MDSC, and PD-1(+) T cells in patients with advanced HCC restored production of granzyme B by CD8(+) T cells, reaching levels observed in normal controls and also modestly increased the number of IFN-γ producing CD4(+) T cells. These clinical findings encourage efforts to restore T-cell function in patients with advanced stage disease by highlighting combined approaches to deplete endogenous suppressor cell populations that can also expand effector T-cell populations.


Assuntos
Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/imunologia , Células Mieloides/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno CTLA-4/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Ativação Linfocitária , Depleção Linfocítica , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Células Mieloides/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo
19.
Oncoimmunology ; 2(7): e24679, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24073364

RESUMO

The accumulation of immunosuppressive cells and exhausted effector T cells highlight an important immune dysfunction in advanced stage hepatocellular carcinoma (HCC) patients. These cells significantly hamper the efficacy immunotherapies and facilitate HCC progression. We have recently demonstrated that the multipronged depletion of immunosuppressive cells potentially restores effector T-cell function in HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA