Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770643

RESUMO

At low temperature, methyl groups act as hindered quantum rotors exhibiting rotational quantum tunneling, which is highly sensitive to a local methyl group environment. Recently, we observed this effect using pulsed electron paramagnetic resonance (EPR) in two dimethylammonium-containing hybrid perovskites doped with paramagnetic Mn2+ ions. Here, we investigate the feasibility of using an alternative fast-relaxing Co2+ paramagnetic center to study the methyl group tunneling, and, as a model compound, we use dimethylammonium zinc formate [(CH3)2NH2][Zn(HCOO)3] hybrid perovskite. Our multifrequency (X-, Q- and W-band) EPR experiments reveal a high-spin state of the incorporated Co2+ center, which exhibits fast spin-lattice relaxation and electron spin decoherence. Our pulsed EPR experiments reveal magnetic field independent electron spin echo envelope modulation (ESEEM) signals, which are assigned to the methyl group tunneling. We use density operator simulations to extract the tunnel frequency of 1.84 MHz from the experimental data, which is then used to calculate the rotational barrier of the methyl groups. We compare our results with the previously reported Mn2+ case showing that our approach can detect very small changes in the local methyl group environment in hybrid perovskites and related materials.

2.
Faraday Discuss ; 234(0): 195-213, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35147155

RESUMO

The solar water-splitting protein complex, photosystem II (PSII), catalyzes one of the most energetically demanding reactions in nature by using light energy to drive a catalyst capable of oxidizing water. The water oxidation reaction is catalyzed at the Mn4Ca-oxo cluster in the oxygen-evolving complex (OEC), which cycles through five light-driven S-state intermediates (S0-S4). A detailed mechanism of the reaction remains elusive as it requires knowledge of the delivery and binding of substrate water in the higher S-state intermediates. In this study, we use two-dimensional (2D) hyperfine sublevel correlation spectroscopy, in conjunction with quantum mechanics/molecular mechanics (QM/MM) and density functional theory (DFT), to probe the binding of the substrate analog, methanol, in the S2 state of the D1-N87A variant of PSII from Synechocystis sp. PCC 6803. The results indicate that the size and specificity of the "narrow" channel is altered in D1-N87A PSII, allowing for the binding of deprotonated 13C-labeled methanol at the Mn4(IV) ion of the catalytic cluster in the S2 state. This has important implications on the mechanistic models for water oxidation in PSII.


Assuntos
Complexo de Proteína do Fotossistema II , Synechocystis , Metanol/metabolismo , Oxirredução , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Synechocystis/química , Synechocystis/genética , Synechocystis/metabolismo , Água/química
3.
Phys Chem Chem Phys ; 22(16): 8513-8521, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32301462

RESUMO

We present an X- and Q-band continuous wave (CW) and pulse electron paramagnetic resonance (EPR) study of a manganese doped [NH4][Zn(HCOO)3] hybrid framework, which exhibits a ferroelectric structural phase transition at 190 K. The CW EPR spectra obtained at different temperatures exhibit clear changes at the phase transition temperature. This suggests a successful substitution of the Zn2+ ions by the paramagnetic Mn2+ centers, which is further confirmed by the pulse EPR and 1H ENDOR experiments. Spectral simulations of the CW EPR spectra are used to obtain the temperature dependence of the Mn2+ zero-field splitting, which indicates a gradual deformation of the MnO6 octahedra indicating a continuous character of the transition. The determined data allow us to extract the critical exponent of the order parameter (ß = 0.12), which suggests a quasi two-dimensional ordering in [NH4][Zn(HCOO)3]. The experimental EPR results are supported by the density functional theory calculations of the zero-field splitting parameters. Relaxation time measurements of the Mn2+ centers indicate that the longitudinal relaxation is mainly driven by the optical phonons, which correspond to the vibrations of the metal-oxygen octahedra. The temperature behavior of the transverse relaxation indicates a dynamic process in the ordered ferroelectric phase.

4.
Phys Chem Chem Phys ; 22(11): 6457-6467, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32152610

RESUMO

Chloracidobacterium (C.) thermophilum is a microaerophilic, chlorophototrophic species in the phylum Acidobacteria that uses homodimeric type-1 reaction centers (RC) to convert light energy into chemical energy using (bacterio)chlorophyll ((B)Chl) cofactors. Pigment analyses show that these RCs contain BChl aP, Chl aPD, and Zn2+-BChl aP' in the approximate ratio 7.1 : 5.4 : 1. However, the functional roles of these three different Chl species are not yet fully understood. It was recently demonstrated that Chl aPD is the primary electron acceptor. Because Zn2+-(B)Chl aP' is present at low abundance, it was suggested that the primary electron donor might be a dimer of Zn2+-BChl aP' molecules. In this study, we utilize isotopic enrichment and high-resolution two-dimensional (2D) 14N and 67Zn hyperfine sublevel correlation (HYSCORE) spectroscopy to demonstrate that the primary donor cation, P840+, in the C. thermophilum RC is indeed a Zn2+-BChl aP' dimer. Density functional theory (DFT) calculations and the measured electron-nuclear hyperfine parameters of P840+ indicate that the electron spin density on P840+ is distributed nearly symmetrically over two Zn2+-(B)Chl aP' molecules as expected in a homodimeric RC. To our knowledge this is the only example of a photochemical RC in which the Chl molecules of the primary donor are metallated differently than those of the antenna.


Assuntos
Acidobacteria/química , Bacterioclorofila A/química , Processos Fotoquímicos , Zinco/química , Metabolismo Energético , Luz , Análise Espectral
5.
Angew Chem Int Ed Engl ; 57(44): 14533-14537, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949230

RESUMO

The structure of paramagnetic surface species is notoriously difficult to determine. For TiIII centers related to Ziegler-Natta catalysis, we demonstrate here that detailed structural information can be obtained by advanced EPR spectroscopy and DFT computations, benchmarked on molecular analogs. The hyperfine sublevel correlation (HYSCORE) spectra obtained after reaction with 13 C-labeled ethylene provides information about the coupling with a proton in the first coordination sphere of TiIII as well as significant 13 C hyperfine coupling and thereby allows structural assignment of the surface species.

6.
J Am Chem Soc ; 139(26): 8855-8867, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28582614

RESUMO

Grafting molecular precursors on partially dehydroxylated silica followed by a thermal treatment yields silica-supported M(III) sites for a broad range of metals. They display unique properties such as high activity in olefin polymerization and alkane dehydrogenation (M = Cr) or efficient luminescence properties (M = Yb and Eu) essential for bioimaging. Here, we interrogate the local structure of the M(III) surface sites obtained from two molecular precursors, amides M(N(SiMe3)2)3 vs siloxides (M(OSi(OtBu)3)3·L with L = (THF)2 or HOSi(OtBu)3 for M = Cr, Yb, Eu, and Y, by a combination of advanced spectroscopic techniques (EPR, IR, XAS, UV-vis, NMR, luminescence spectroscopies). For paramagnetic Cr(III), EPR (HYSCORE) spectroscopy shows hyperfine coupling to nitrogen only when the amide precursor is used, consistent with the presence of nitrogen neighbors. This changes their specific reactivity compared to Cr(III) sites in oxygen environments obtained from siloxide precursors: no coordination of CO and oligomer formation during the polymerization of ethylene due to the presence of a N-donor ligand. The presence of the N-ligand also affects the photophysical properties of Yb and Eu by decreasing their lifetime, probably due to nonradiative deactivation of excited states by N-H bonds. Both types of precursors lead to a distribution of surface sites according to reactivity for Cr, luminescence spectroscopy for Yb and Eu, and dynamic nuclear polarization surface-enhanced 89Y NMR spectroscopy (DNP SENS). In particular, DNP SENS provides molecular-level information about the structure of surface sites by evidencing the presence of tri-, tetra-, and pentacoordinated Y-surface sites. This study provides unprecedented evidence and tools to assess the local structure of metal surface sites in relation to their chemical and physical properties.

7.
Chemphyschem ; 16(14): 2968-73, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26305910

RESUMO

Doping the well-known metal-organic framework MIL-53(Al) with vanadium(IV) ions leads to significant changes in the breathing behaviour and might have repercussions on the catalytic behaviour as well. To understand the properties of such a doped framework, it is necessary to determine where dopant ions are actually incorporated. Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are applied to reveal the nearest environment of the paramagnetic vanadium(IV) dopant ions. EPR spectra of as-synthesised vanadium-doped MIL-53 are recorded at S-, X-, Q- and W-band microwave frequencies. The EPR spectra suggest that at low dopant concentrations (1.0-2.6 mol %) the vanadium(IV) ions are well dispersed in the matrix. Varying the vanadium dopant concentration within this range or the dopant salt leads to the same dominant EPR component. In the ENDOR spectra, hyperfine (HF) interactions with (1) H, (27) Al and (51) V nuclei are observed. The HF parameters extracted from simulations strongly suggest that the vanadium(IV) ions substitute Al in the framework.

8.
Dalton Trans ; 53(17): 7340-7349, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38602311

RESUMO

The synthesis, thermolysis, and surface organometallic chemistry of thermolytic molecular precursors based on a new germanosilicate ligand platform, -OGe[OSi(OtBu)3]3, is described. Use of this ligand is demonstrated with preparation of complexes containing the first-row transition metals Cr, Mn, and Fe. The thermolysis and grafting behavior of the synthesized complexes, Fe{OGe[OSi(OtBu)3]3}2 (FeGe), Mn{OGe[OSi(OtBu)3]3}2(THF)2 (MnGe) and Cr{OGe[OSi(OtBu)3]3}2(THF)2 (CrGe), was evaluated using a combination of thermogravimetric analysis; nuclear magnetic resonance (NMR), ultraviolet-visible (UV-Vis), and electron paramagnetic resonance (EPR) spectroscopies; and single-crystal X-ray diffraction (XRD). Grafting of the precursors onto SBA-15 mesoporous silica and subsequent calcination in air led to substantial changes in transition metal coordination environments and oxidation states, the implications of which are discussed in the context of low-coordinate and low oxidation state thermolytic molecular precursors.

9.
Dalton Trans ; 53(4): 1722-1734, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38167907

RESUMO

In the present work, copper whitlockite (Cu-WH, Ca18Cu2(HPO4)2(PO4)12) was successfully synthesized and comprehensively characterized, founding the base knowledge for its future studies in medicine, particularly for bone regeneration. This material is a copper-containing analog of the well-known biomineral magnesium whitlockite (Mg-WH, Ca18Mg2(HPO4)2(PO4)12). The synthesis of powders was performed by a dissolution-precipitation method in an aqueous medium under hydrothermal conditions. Phase conversion from brushite (CaHPO4·2H2O) to Cu-WH took place in an acidic medium in the presence of Cu2+ ions. Optimization of the synthesis conditions in terms of medium pH, temperature, time, Ca/Cu molar ratio and concentration of starting materials was performed. The crystal structure of the synthesized products was confirmed by XRD, FTIR and Raman spectroscopy, 1H and 31P solid-state NMR, and EPR. Morphological features and elemental distribution of the synthesized powders were studied by means of SEM/EDX analysis. The ion release in SBF solution was estimated using ICP-OES. Cytotoxicity experiments were performed with MC3T3-E1 cells. The study on thermal stability revealed that the synthesized material is thermally unstable and gradually decomposes upon annealing to Cu-substituted ß-Ca3(PO4)2 and Ca2P2O7.

10.
Dalton Trans ; 53(17): 7292-7302, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38587489

RESUMO

Hybrid methylammonium (MA) lead halide perovskites have emerged as materials exhibiting excellent photovoltaic performance related to their rich structural and dynamic properties. Here, we use multifrequency (X-, Q-, and W-band) electron paramagnetic resonance (EPR) spectroscopy of Mn2+ impurities in MAPbCl3 to probe the structural and dynamic properties of both the organic and inorganic sublattices of this compound. The temperature dependent continuous-wave (CW) EPR experiments reveal a sudden change of the Mn2+ spin Hamiltonian parameters at the phase transition to the ordered orthorhombic phase indicating its first-order character and significant slowing down of the MA cation reorientation. Pulsed EPR experiments are employed to measure the temperature dependences of the spin-lattice relaxation T1 and decoherence T2 times of the Mn2+ ions in the orthorhombic phase of MAPbCl3 revealing a coupling between the spin center and vibrations of the inorganic framework. Low-temperature electron spin echo envelope modulation (ESEEM) experiments of the protonated and deuterated MAPbCl3 analogues show the presence of quantum rotational tunneling of the ammonium groups, allowing to accurately probe their rotational energy landscape.

11.
Nanoscale Adv ; 6(3): 947-959, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298598

RESUMO

Multivalent ligands hold promise for enhancing avidity and selectivity to simultaneously target multimeric proteins, as well as potentially modulating receptor signaling in pharmaceutical applications. Essential for these manipulations are nanosized scaffolds that precisely control ligand display patterns, which can be achieved by using polyproline oligo-helix macrocyclic nanoscaffolds via selective binding to protein oligomers and cell surface receptors. This work focuses on synthesis and structural characterization of different-sized polyproline tri-helix macrocyclic (PP3M) scaffolds. Through combined analysis of circular dichroism (CD), small- and wide-angle X-ray scattering (SWAXS), electron spin resonance (ESR) spectroscopy, and molecular modeling, a non-coplanar tri-helix loop structure with partially crossover helix ends is elucidated. This structural model aligns well with scanning tunneling microscopy (STM) imaging. The present work enhances the precision of nanoscale organic synthesis, offering prospects for controlled ligand positioning on scaffolds. This advancement paves the way for further applications in nanomedicine through selective protein interaction, manipulation of cell surface receptor functions, and developments of more complex polyproline-based nanostructures.

12.
J Magn Reson ; 346: 107356, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36516664

RESUMO

Inspired by the success of NMR cryoprobes, we recently reported a leap in X-band EPR sensitivity by equipping an ordinary EPR probehead with a cryogenic low-noise microwave amplifier placed closed to the sample in the same cryostat [Simenas et al. J. Magn. Reson.322, 106876 (2021)]. Here, we explore, theoretically and experimentally, a more general approach, where the amplifier temperature is independent of the sample temperature. This approach brings a number of important advantages, enabling sensitivity improvement irrespective of sample temperature, as well as making it more practical to combine with ENDOR and Q-band resonators, where space in the sample cryostat is often limited. Our experimental realisation places the cryogenic preamplifier within an external closed-cycle cryostat, and we show CW and pulsed EPR and ENDOR sensitivity improvements at both X- and Q-bands with negligible dependence on sample temperature. The cryoprobe delivers signal-to-noise ratio enhancements that reduce the equivalent pulsed EPR measurement time by 16× at X-band and close to 5× at Q-band. Using the theoretical framework we discuss further improvements of this approach which could be used to achieve even greater sensitivity.

13.
J Magn Reson ; 356: 107573, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37856964

RESUMO

Following the success of cryogenic EPR signal preamplification at X-band, we present a Q-band EPR cryoprobe compatible with a standard EPR resonator. The probehead is equipped with a cryogenic ultra low-noise microwave amplifier and its protection circuit that are placed close to the sample in the same cryostat. Our cryoprobe maintains the same sample access and tuning which is typical in Q-band EPR, as well as supports high-power pulsed experiments on typical samples. The performance of our setup is benchmarked against that of existing commercial and home-built Q-band spectrometers, using CW EPR and pulsed EPR/ENDOR experiments to reveal a significant sensitivity improvement which reduces the measurement time by a factor of about 40× at 6 K temperature at reduced power levels.

14.
Chem Mater ; 34(22): 10104-10112, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36439319

RESUMO

Mixing molecular cations in hybrid lead halide perovskites is a highly effective approach to enhance the stability and performance of optoelectronic devices based on these compounds. In this work, we prepare and study novel mixed 3D methylammonium (MA)-ethylammonium (EA) MA1-x EA x PbI3 (x < 0.4) hybrid perovskites. We use a suite of different techniques to determine the structural phase diagram, cation dynamics, and photoluminescence properties of these compounds. Upon introduction of EA, we observe a gradual lowering of the phase-transition temperatures, indicating stabilization of the cubic phase. For mixing levels higher than 30%, we obtain a complete suppression of the low-temperature phase transition and formation of a new tetragonal phase with a different symmetry. We use broad-band dielectric spectroscopy to study the dielectric response of the mixed compounds in an extensive frequency range, which allows us to distinguish and characterize three distinct dipolar relaxation processes related to the molecular cation dynamics. We observe that mixing increases the rotation barrier of the MA cations and tunes the dielectric permittivity values. For the highest mixing levels, we observe the signatures of the dipolar glass phase formation. Our findings are supported by density functional theory calculations. Our photoluminescence measurements reveal a small change of the band gap upon mixing, indicating the suitability of these compounds for optoelectronic applications.

15.
Biochim Biophys Acta Bioenerg ; 1862(7): 148424, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33785317

RESUMO

Recent studies on Photosystem I (PS I) have shown that the six core chlorophyll a molecules are highly coupled, allowing for efficient creation and stabilization of the charge-separated state. One area of particular interest is the identity and function of the primary acceptor, A0, as the factors that influence its ultrafast processes and redox properties are not yet fully elucidated. It was recently shown that A0 exists as a dimer of the closely-spaced Chl2/Chl3 molecules wherein the reduced A0- state has an asymmetric distribution of electron spin density that favors Chl3. Previous experimental work in which this ligand was changed to a hard base (histidine, M688HPsaA) revealed severely impacted electron transfer processes at both the A0 and A1 acceptors; molecular dynamics simulations further suggested two distinct conformations of PS I in which the His residue coordinates and forms a hydrogen bond to the A0 and A1 cofactors, respectively. In this study, we have applied 2D HYSCORE spectroscopy in conjunction with molecular dynamics simulations and density functional theory calculations to the study of the M688HPsaA variant. Analysis of the hyperfine parameters demonstrates that the His imidazole serves as the axial ligand to the central Mg2+ ion in Chl3A in the M688HPsaA variant. Although the change in ligand identity does not alter delocalization of electron density over the Chl2/Chl3 dimer, a small shift in the asymmetry of delocalization, coupled with the electron withdrawing properties of the ligand, most likely accounts for the inhibition of forward electron transfer in the His-ligated conformation.


Assuntos
Clorofila A/metabolismo , Elétrons , Histidina/metabolismo , Imidazóis/metabolismo , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila A/química , Transporte de Elétrons , Histidina/química , Ligação de Hidrogênio , Imidazóis/química , Cinética , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Complexo de Proteína do Fotossistema I/genética
16.
iScience ; 24(7): 102719, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34278250

RESUMO

This research addresses one of the most compelling issues in the field of photosynthesis, namely, the role of the accessory chlorophyll molecules in primary charge separation. Using a combination of empirical and computational methods, we demonstrate that the primary acceptor of photosystem (PS) I is a dimer of accessory and secondary chlorophyll molecules, Chl2A and Chl3A, with an asymmetric electron charge density distribution. The incorporation of highly coupled donors and acceptors in PS I allows for extensive delocalization that prolongs the lifetime of the charge-separated state, providing for high quantum efficiency. The discovery of this motif has widespread implications ranging from the evolution of naturally occurring reaction centers to the development of a new generation of highly efficient artificial photosynthetic systems.

17.
iScience ; 23(8): 101366, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32738611

RESUMO

The photosynthetic water-oxidation reaction is catalyzed by the oxygen-evolving complex in photosystem II (PSII) that comprises the Mn4CaO5 cluster, with participation of the redox-active tyrosine residue (YZ) and a hydrogen-bonded network of amino acids and water molecules. It has been proposed that the strong hydrogen bond between YZ and D1-His190 likely renders YZ kinetically and thermodynamically competent leading to highly efficient water oxidation. However, a detailed understanding of the proton-coupled electron transfer (PCET) at YZ remains elusive owing to the transient nature of its intermediate states involving YZ⋅. Herein, we employ a combination of high-resolution two-dimensional 14N hyperfine sublevel correlation spectroscopy and density functional theory methods to investigate a bioinspired artificial photosynthetic reaction center that mimics the PCET process involving the YZ residue of PSII. Our results underscore the importance of proximal water molecules and charge delocalization on the electronic structure of the artificial reaction center.

18.
Nat Commun ; 11(1): 5103, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037192

RESUMO

Cation engineering provides a route to control the structure and properties of hybrid halide perovskites, which has resulted in the highest performance solar cells based on mixtures of Cs, methylammonium, and formamidinium. Here, we present a multi-technique experimental and theoretical study of structural phase transitions, structural phases and dipolar dynamics in the mixed methylammonium/dimethylammonium MA1-xDMAxPbBr3 hybrid perovskites (0 ≤ x ≤ 1). Our results demonstrate a significant suppression of the structural phase transitions, enhanced disorder and stabilization of the cubic phase even for a small amount of dimethylammonium cations. As the dimethylammonium concentration approaches the solubility limit in MAPbBr3, we observe the disappearance of the structural phase transitions and indications of a glassy dipolar phase. We also reveal a significant tunability of the dielectric permittivity upon mixing of the molecular cations that arises from frustrated electric dipoles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA