Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 228, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120525

RESUMO

BACKGROUND: Moth bean (Vigna aconitifolia) is an underutilized, protein-rich legume that is grown in arid and semi-arid areas of south Asia and is highly resistant to abiotic stresses such as heat and drought. Despite its economic importance, the crop remains unexplored at the genomic level for genetic diversity and trait mapping studies. To date, there is no report of SNP marker discovery and association mapping of any trait in this crop. Therefore, this study aimed to dissect the genetic diversity, population structure and marker-trait association for the flowering trait in a diversity panel of 428 moth bean accessions using genotyping by sequencing (GBS) approach. RESULTS: A total of 9078 high-quality single nucleotide polymorphisms (SNPs) were discovered by genotyping of 428 moth bean accessions. Model-based structure analysis and PCA grouped the moth bean accessions into two subpopulations. Cluster analysis revealed accessions belonging to the Northwestern region of India had higher variability than accessions from the other regions suggesting that this region represents its center of diversity. AMOVA revealed more variations within individuals (74%) and among the individuals (24%) than among the populations (2%). Marker-trait association analysis using seven multi-locus models including mrMLM, FASTmrEMMA FASTmrEMMA, ISIS EM-BLASSO, MLMM, BLINK and FarmCPU revealed 29 potential genomic regions for the trait days to 50% flowering, which were consistently detected in three or more models. Analysis of the allelic effect of the major genomic regions explaining phenotypic variance of more than 10% and those detected in at least 2 environments showed 4 genomic regions with significant phenotypic effect on this trait. Further, we also analyzed genetic relationships among the Vigna species using SNP markers. The genomic localization of moth bean SNPs on genomes of closely related Vigna species demonstrated that maximum numbers of SNPs were getting localized on Vigna mungo. This suggested that the moth bean is most closely related to V. mungo. CONCLUSION: Our study shows that the north-western regions of India represent the center of diversity of the moth bean. Further, the study revealed flowering-related genomic regions/candidate genes which can be potentially exploited in breeding programs to develop early-maturity moth bean varieties.


Assuntos
Estudo de Associação Genômica Ampla , Vigna , Vigna/genética , Genótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética
2.
Proc Natl Acad Sci U S A ; 109(44): 18198-203, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23071326

RESUMO

MicroRNAs (miRNAs) are important for plant development and stress responses. However, factors regulating miRNA metabolism are not completely understood. SICKLE (SIC), a proline-rich protein critical for development and abiotic stress tolerance of Arabidopsis, was identified in this study. Loss-of-function sic-1 mutant plants exhibited a serrated, sickle-like leaf margin, reduced height, delayed flowering, and abnormal inflorescence phyllotaxy, which are common characteristics of mutants involved in miRNA biogenesis. The sic-1 mutant plants accumulated lower levels of a subset of miRNAs and transacting siRNAs but higher levels of corresponding primary miRNAs than the WT. The SIC protein colocalizes with the miRNA biogenesis component HYL1 in distinct subnuclear bodies. sic-1 mutant plants also accumulated higher levels of introns from hundreds of loci. In addition, sic-1 mutant plants are hypersensitive to chilling and salt stresses. These results suggest that SIC is a unique factor required for the biogenesis of some miRNAs and degradation of some spliced introns and important for plant development and abiotic stress responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroRNAs/biossíntese , Domínios Proteicos Ricos em Prolina , Estresse Fisiológico , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Íntrons , Mutação , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real
3.
Physiol Mol Biol Plants ; 21(1): 71-81, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25648764

RESUMO

Guggulsterone is an aromatic steroidal ketonic compound obtained from vertical rein ducts and canals of bark of Commiphora wightii (Arn.) Bhandari (Family - Burseraceae). Owing to its multifarious medicinal and therapeutic values as well as its various other significant bioactivities, guggulsterone has high demand in pharmaceutical, perfumery and incense industries. More and more pharmaceutical and perfumery industries are showing interest in guggulsterone, therefore, there is a need for its quantitative determination in existing natural populations of C. wightii. Identification of elite germplasm having higher guggulsterone content can be multiplied through conventional or biotechnological means. In the present study an effort was made to estimate two isoforms of guggulsterone i.e. E and Z guggulsterone in raw exudates of 75 accessions of C. wightii collected from three states of North-western India viz. Rajasthan (19 districts), Haryana (4 districts) and Gujarat (3 districts). Extracted steroid rich fraction from stem samples was fractionated using reverse-phase preparative High Performance Liquid Chromatography (HPLC) coupled with UV/VIS detector operating at wavelength of 250 nm. HPLC analysis of stem samples of wild as well as cultivated plants showed that the concentration of E and Z isomers as well as total guggulsterone was highest in Rajasthan, as compared to Haryana and Gujarat states. Highest concentration of E guggulsterone (487.45 µg/g) and Z guggulsterone (487.68 µg/g) was found in samples collected from Devikot (Jaisalmer) and Palana (Bikaner) respectively, the two hyper-arid regions of Rajasthan, India. Quantitative assay was presented on the basis of calibration curve obtained from a mixture of standard E and Z guggulsterones with different validatory parameters including linearity, selectivity and specificity, accuracy, auto-injector, flow-rate, recoveries, limit of detection and limit of quantification (as per norms of International conference of Hormonization). Present findings revealed the role of environmental factors on biosynthesis of guggulsterone isomers under natural conditions.

4.
Physiol Mol Biol Plants ; 19(1): 21-41, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24381435

RESUMO

Bamboos (family Poaceae) are the most beautiful and useful plants on the Earth, mainly found in the tropical and sub-tropical regions of the world. Bamboos are fast growing and early maturing, but lack of proper management of bamboo resources is leading to rapid reduction of the existing bamboosetum. Bamboo propagation through seeds is limited due to long flowering cycle of upto 120 years, seed sterility and short seed viability. Infrequent and unpredictable flowering events coupled with peculiar monocarpic behaviour i.e. flowering once before culm death, and extensive genome polyploidization are additional challenges for this woody group. Similarly, vegetative propagation by cuttings, offsets and rhizomes are also inadequate to cope up with the demand of planting stock due to large propagule size, limited availability, seasonal dependence, low multiplication rate and rooting percentage. Therefore, attempts have been made to propagate bamboos through in vitro techniques. In vitro flowering has also been achieved successfully in some bamboo species. Classification systems proposed to date need further support, as taxonomic delineation at lower levels is still lacking sufficient resolution. Tremendous advancement in molecular markers holds the promise to address the needs of bamboo taxonomy (systematics and identification) and diversity studies. Successful application of molecular marker techniques has been achieved in several bamboo species although, more studies are required to understand the population structure and genetic diversity of bamboos in a better way. In addition, some efforts have also been made to clone important genes from bamboos and also for genetic transformation using Agrobacterium and particle bombardment methods. An overview of the recent developments made in improvement of bamboos through in vitro propagation, molecular marker technologies, cloning, and transformation and transgenics has been presented. The future potential of improvement of bamboos using modern biotechnological tools has also been discussed.

5.
Stress Biol ; 1(1): 12, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37676538

RESUMO

Much has been learned about how plants acclimate to stressful environments, but the molecular basis of stress adaptation and the potential involvement of epigenetic regulation remain poorly understood. Here, we examined if salt stress induces mutagenesis in suspension cultured plant cells and if DNA methylation affects the mutagenesis using whole genome resequencing analysis. We generated suspension cell cultures from two Arabidopsis DNA methylation-deficient mutants and wild-type plants, and subjected the cultured cells to stepwise increases in salt stress intensity over 40 culture cycles. We show that ddc (drm1 drm2 cmt3) mutant cells can adapt to grow in 175 mM NaCl-containing growth medium and exhibit higher adaptability compared to wild type Col-0 and nrpe1 cells, which can adapt to grow in only 125 mM NaCl-containing growth medium. Salt treated nrpe1 and ddc cells but not wild type cells accumulate more mutations compared with their respective untreated cells. There is no enrichment of stress responsive genes in the list of mutated genes in salt treated cells compared to the list of mutated genes in untreated cells. Our results suggest that DNA methylation prevents the induction of mutagenesis by salt stress in plant cells during stress adaptation.

7.
Springerplus ; 2: 676, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386622

RESUMO

The increasing prevalence of environmental pollution, especially soil contamination with heavy metals has led to their uptake in the human food chains through plant parts. Accumulation and magnification of heavy metals in human tissues through consumption of herbal remedies can cause hazardous impacts on health. Therefore, chemical profiling of nine heavy metals (Mn, Cr, Pb, Fe, Cd, Co, Zn, Ni and Hg) was undertaken in stem and leaf samples of ten medicinal plants (Acacia nilotica, Bacopa monnieri, Commiphora wightii, Ficus religiosa, Glycyrrhiza glabra, Hemidesmus indicus, Salvadora oleoides, Terminalia bellirica, Terminalia chebula and Withania somnifera) collected from environmentally diverse regions of Haryana and Rajasthan states in North-Western India. Concentration of all heavy metals, except Cr, was within permissible limits in the tested stem and leaf samples. Leaf samples had consistently more Cr compared to respective stem samples with highest concentration in leaf samples of Bacopa monnieri (13.19 ± 0.0480 ppm) and stem samples of Withania somnifera (4.93 ± 0.0185 ppm) both collected from Bahadurgarh (heavy industrial area), Haryana. This amount was beyond the permissible limit of 2.0 ppm defined by WHO for raw herbal material. Other two most perilous metals Pb (2.64 ± 0.0260) and Cd (0.04 ± 0.0274) were also recorded in Bahadurgarh region, although below permissible limits. Concentration of Hg remained below detectable levels in all the leaf and stem samples tested. These results suggested that cultivation of medicinal plants and other dietary herbs should be curtailed near environmentally polluted especially industrial areas for avoidance of health hazards.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA