Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 118: 210-220, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452987

RESUMO

In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI1) and after (MRI2) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI1 and MRI2. Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.


Assuntos
Substância Cinzenta , Heroína , Humanos , Ratos , Animais , Heroína/efeitos adversos , Microglia , Estudos Longitudinais , Encéfalo , Imageamento por Ressonância Magnética
2.
Mol Psychiatry ; 27(2): 855-864, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34642457

RESUMO

GABAergic projections from the nucleus accumbens core to the dorsolateral ventral pallidum are necessary for drug-conditioned cues to initiate relapse-like drug seeking. Astrocytes in the ventral pallidum are situated perisynaptically and regulate GABA transmission through expression of GABA uptake transporters, but whether they are involved in regulating drug seeking is unknown. To determine the contribution of ventral pallidal astrocytes to heroin seeking, we labeled astrocytes in male and female rats with a membrane-bound fluorescent tag and used confocal microscopy to quantify astroglial expression of the GABA transporter GAT-3 and astrocyte synaptic proximity after withdrawal from heroin self-administration and during 15 min of cued heroin seeking. We found that GAT-3 was upregulated in rats that had extinguished heroin seeking, but not in animals that were withdrawn from heroin without extinction training or in rats that extinguished sucrose seeking. When GAT-3 upregulation was reversed using a vivo-morpholino oligo, heroin seeking was restored in the extinguished context and extinction of cued heroin seeking was disrupted compared to control animals. Although astrocyte synaptic proximity was not altered overall after heroin withdrawal, examination of astrocyte proximity to accumbens D1- or D2-expressing afferents revealed a selective increase in astrocyte proximity with D1-expressing terminals during extinction of heroin self-administration. Experimentally-induced reduction of astrocyte synaptic proximity through knockdown of the astrocyte-selective actin-binding protein ezrin also markedly disrupted extinction of heroin seeking. Notably, GAT-3 or ezrin knockdown had no impact on context- or cue-induced seeking in sucrose-trained animals. These data show that astrocytes in the ventral pallidum undergo plasticity after extinction of heroin use that reduces seeking and highlight the importance of astrocyte-neuron interactions in shaping behaviors associated with opioid use disorder.


Assuntos
Prosencéfalo Basal , Heroína , Animais , Astrócitos/metabolismo , Prosencéfalo Basal/metabolismo , Extinção Psicológica , Feminino , Heroína/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Polímeros , Ratos , Ratos Sprague-Dawley , Autoadministração , Sacarose , Regulação para Cima , Ácido gama-Aminobutírico/metabolismo
3.
Addict Biol ; 28(8): e13286, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500492

RESUMO

Drugs of abuse induce cell type-specific adaptations in D1- and D2-medium spiny neurons (MSNs) in the nucleus accumbens core (NAcore) that can bias signalling towards D1-MSNs and enhance relapse vulnerability. Whether Δ9 -tetrahydrocannabinol (THC) use initiates similar neuroadaptations is unknown. D1- and D2-Cre transgenic rats were transfected with Cre-dependent reporters and trained to self-administer THC + cannabidiol (THC + CBD). After extinction training spine morphology, glutamate transmission, CB1R function and cFOS expression were quantified. We found that extinction from THC + CBD induced a loss of large spine heads in D1- but not D2-MSNs and commensurate reductions in glutamate synaptic transmission. Also, presynaptic CB1R function was impaired selectively at glutamatergic synapses on D1-MSNs, which augmented the capacity to potentiate glutamate transmission. Using cFOS expression as an activity marker, we found no change after extinction but increased cFOS expression in D1-MSNs after cue-induced drug seeking. Contrasting D1-MSNs, CB1R function and glutamate synaptic transmission on D2-MSN synapses were unaffected by THC + CBD use. However, cFOS expression was decreased in D2-MSNs of THC + CBD-extinguished rats and was restored after drug seeking. Thus, CB1R adaptations in D1-MSNs partially predicted neuronal activity changes, posing pathway specific modulation of eCB signalling in D1-MSNs as a potential treatment avenue for cannabis use disorder (CUD).


Assuntos
Dronabinol , Núcleo Accumbens , Ratos , Animais , Camundongos , Núcleo Accumbens/metabolismo , Dronabinol/farmacologia , Dronabinol/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Ratos Transgênicos , Glutamatos/metabolismo , Receptores de Dopamina D1/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
4.
Addict Biol ; 28(5): e13279, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186441

RESUMO

Relapse to drug seeking involves transient synaptic remodelling that occurs in response to drug-associated cues. This remodelling includes activation of matrix metalloproteinases (MMPs) to initiate catalytic signalling in the extracellular matrix in the nucleus accumbens core (NAcore). We hypothesized that MMP activity would be increased in the NAcore during cue-induced methamphetamine (meth) seeking in a rat model of meth use and relapse. Male and female rats had indwelling jugular catheters and bilateral intracranial cannula targeting the NAcore surgically implanted. Following recovery, rats underwent meth or saline self-administration (6 h/day for 15 days) in which active lever responding was paired with a light + tone stimulus complex, followed by home cage abstinence. Testing occurred after 7 or 30 days of abstinence. On test day, rats were microinjected with a fluorescein isothiocyanate (FITC)-quenched gelatin substrate that fluoresces following cleavage by MMP-2,9, allowing for the quantification of gelatinase activity during cued-relapse testing. MMP-2,9 activity was significantly increased in the NAcore by meth cues presentation after 7 and 30 days of abstinence, indicating that remodelling by MMPs occurs during presentation of meth associated cues. Surprisingly, although cue-induced seeking increased between Days 7 and 30, MMP-2,9 activity did not increase. These findings indicate that although MMP activation is elicited during meth cue-induced seeking, MMP activation did not parallel the meth seeking that occurs during extended drug abstinence.


Assuntos
Estimulantes do Sistema Nervoso Central , Metanfetamina , Ratos , Masculino , Feminino , Animais , Metanfetamina/farmacologia , Ratos Sprague-Dawley , Sinais (Psicologia) , Metaloproteinase 2 da Matriz , Comportamento de Procura de Droga , Recidiva , Autoadministração , Núcleo Accumbens , Estimulantes do Sistema Nervoso Central/farmacologia , Extinção Psicológica
5.
Mol Psychiatry ; 26(11): 6159-6169, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34349226

RESUMO

Antipsychotic-induced dopamine supersensitivity, or behavioral supersensitivity, is a problematic consequence of long-term antipsychotic treatment characterized by the emergence of motor abnormalities, refractory symptoms, and rebound psychosis. The underlying mechanisms are unclear and no approaches exist to prevent or reverse these unwanted effects of antipsychotic treatment. Here we demonstrate that behavioral supersensitivity stems from long-lasting pre, post and perisynaptic plasticity, including insertion of Ca2+-permeable AMPA receptors and loss of D2 receptor-dependent inhibitory postsynaptic currents (IPSCs) in D2 receptor-expressing medium spiny neurons (D2-MSNs) in the nucleus accumbens core (NAcore). The resulting hyperexcitability, prominent in a subpopulation of D2-MSNs (21%), caused locomotor sensitization to cocaine and was associated with behavioral endophenotypes of antipsychotic treatment resistance and substance use disorder, including disrupted extinction learning and augmented cue-induced cocaine-seeking behavior. Chemogenetic restoration of IPSCs in D2-MSNs in the NAcore was sufficient to prevent antipsychotic-induced supersensitivity, pointing to an entirely novel therapeutic direction for overcoming this condition.


Assuntos
Antipsicóticos , Cocaína , Antipsicóticos/farmacologia , Cocaína/farmacologia , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
6.
Addict Biol ; 27(2): e13151, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35229943

RESUMO

Nicotine addiction is a chronic relapsing brain disorder, and cigarette smoking is the leading cause of preventable death in the United States. Currently, the most effective pharmacotherapy for smoking cessation is Varenicline (VRN), which reduces both positive and negative reinforcement by nicotine. Clinically, VRN attenuates withdrawal symptoms and promotes abstinence, but >50% of smokers relapse within 3 months following a quit attempt. This may indicate that VRN fails to ameliorate components of nicotine-induced neuroplasticity that promote relapse vulnerability. Animal models reveal that glutamate dysregulation in the nucleus accumbens is associated with nicotine relapse. N-acetylcysteine (NAC) normalizes glutamate transmission and prolongs cocaine abstinence. Thus, combining VRN and NAC may promote and maintain, respectively, nicotine abstinence. In rats, we found that VRN effectively reduced nicotine self-administration and seeking in early abstinence, but not seeking later in abstinence. In contrast, NAC reduced seeking only later in abstinence. Because VRN and NAC are sometimes associated with mild adverse effects, we also evaluated a sequential approach combining subthreshold doses of VRN during self-administration and early abstinence with subthreshold doses of NAC during late abstinence. As expected, subthreshold VRN did not reduce nicotine intake. However, subthreshold VRN and NAC reduced seeking in late abstinence, suggesting a combined effect. Overall, our results suggest that combining subthreshold VRN and NAC is a viable and drug-specific approach to promote abstinence and reduce relapse while minimizing adverse effects. Our data also suggest that different components and time points in addiction engage the different neurocircuits targeted by VRN and NAC.


Assuntos
Abandono do Hábito de Fumar , Tabagismo , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Nicotina/farmacologia , Ratos , Tabagismo/tratamento farmacológico , Tabagismo/prevenção & controle , Vareniclina/farmacologia , Vareniclina/uso terapêutico
7.
J Neurosci ; 40(44): 8463-8477, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33051346

RESUMO

Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced drug seeking in rodent models correlates with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses in the nucleus accumbens core (NAcore). Matrix metalloproteinases (MMPs) are inducible endopeptidases that degrade extracellular matrix (ECM) proteins, and reveal tripeptide Arginine-Glycine-Aspartate (RGD) domains that bind and signal through integrins. Integrins are heterodimeric receptors composed of αß subunits, and a primary signaling kinase is focal adhesion kinase (FAK). We previously showed that MMP activation is necessary for and potentiates cued reinstatement of cocaine seeking, and MMP-induced catalysis stimulates ß3-integrins to induce t-SP. Here, we determined whether ß3-integrin signaling through FAK and cofilin (actin depolymerization factor) is necessary to promote synaptic growth during t-SP. Using a small molecule inhibitor to prevent FAK activation, we blocked cued-induced cocaine reinstatement and increased spine head diameter (dh). Immunohistochemistry on NAcore labeled spines with ChR2-EYFP virus, showed increased immunoreactivity of phosphorylation of FAK (p-FAK) and p-cofilin in dendrites of reinstated animals compared with extinguished and yoked saline, and the p-FAK and cofilin depended on ß3-integrin signaling. Next, male and female transgenic rats were used to selectively label D1 or D2 neurons with ChR2-mCherry. We found that p-FAK was increased during drug seeking in both D1 and D2-medium spiny neurons (MSNs), but increased p-cofilin was observed only in D1-MSNs. These data indicate that ß3-integrin, FAK and cofilin constitute a signaling pathway downstream of MMP activation that is involved in promoting the transient synaptic enlargement in D1-MSNs induced during reinstated cocaine by drug-paired cues.SIGNIFICANCE STATEMENT Drug-associated cues precipitate relapse, which is correlated with transient synaptic enlargement in the accumbens core. We showed that cocaine cue-induced synaptic enlargement depends on matrix metalloprotease signaling in the extracellular matrix (ECM) through ß3-integrin to activate focal adhesion kinase (FAK) and phosphorylate the actin binding protein cofilin. The nucleus accumbens core (NAcore) contains two predominate neuronal subtypes selectively expressing either D1-dopamine or D2-dopamine receptors. We used transgenic rats to study each cell type and found that cue-induced signaling through cofilin phosphorylation occurred only in D1-expressing neurons. Thus, cocaine-paired cues initiate cocaine reinstatement and synaptic enlargement through a signaling cascade selectively in D1-expressing neurons requiring ECM stimulation of ß3-integrin-mediated phosphorylation of FAK (p-FAK) and cofilin.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Neurônios Dopaminérgicos/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Integrina beta3/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Transtornos Relacionados ao Uso de Cocaína/psicologia , Sinais (Psicologia) , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Comportamento de Procura de Droga , Ativação Enzimática , Humanos , Masculino , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Transgênicos , Recidiva , Sinapses
8.
J Neurochem ; 157(5): 1450-1472, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33420731

RESUMO

Substance use disorder (SUD) is characterized, in part by behavior biased toward drug use and away from natural sources of reward (e.g., social interaction, food, sex). The neurobiological underpinnings of SUDs reveal distinct brain regions where neuronal activity is necessary for the manifestation of SUD-characteristic behaviors. Studies that specifically examine how these regions are involved in behaviors motivated by drug versus natural reward allow determinations of which regions are necessary for regulating seeking of both reward types, and appraisals of novel SUD therapies for off-target effects on behaviors motivated by natural reward. Here, we evaluate studies directly comparing regulatory roles for specific brain regions in drug versus natural reward. While it is clear that many regions drive behaviors motivated by all reward types, based on the literature reviewed we propose a set of interconnected regions that become necessary for behaviors motivated by drug, but not natural rewards. The circuitry is selectively necessary for drug seeking includes an Action/Reward subcircuit, comprising nucleus accumbens, ventral pallidum, and ventral tegmental area, a Prefrontal subcircuit comprising prelimbic, infralimbic, and insular cortices, a Stress subcircuit comprising the central nucleus of the amygdala and the bed nucleus of the stria terminalis, and a Diencephalon circuit including lateral hypothalamus. Evidence was mixed for nucleus accumbens shell, insular cortex, and ventral pallidum. Studies for all other brain nuclei reviewed supported a necessary role in regulating both drug and natural reward seeking. Finally, we discuss emerging strategies to further disambiguate the necessity of brain regions in drug- versus natural reward-associated behaviors.


Assuntos
Comportamento de Procura de Droga , Rede Nervosa/fisiologia , Recompensa , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Humanos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Núcleo Accumbens/fisiologia , Transtornos Relacionados ao Uso de Substâncias/psicologia
9.
Mol Psychiatry ; 25(12): 3150-3163, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32985600

RESUMO

Poorly regulated reward seeking is a central feature of substance use disorder. Recent research shows that rewarding drug-related experiences induce synchronous activation of a discrete number of neurons in the nucleus accumbens that are causally linked to reward-related contexts. Here we comprehensively characterize the specific ensemble of neurons built through experience that are linked to seeking behavior. We additionally address the question of whether or not addictive drugs usurp the neuronal networks recruited by natural rewards by evaluating cocaine- and sucrose-associated ensembles within the same mouse. We used FosCreERT2/+/Ai14 transgenic mice to tag cells activated by and potentially encoding cocaine and sucrose seeking. We tagged ~1% of neurons in the core subregion of the accumbens (NAcore) activated during cue-induced seeking for cocaine or sucrose. The majority of tagged cells in the seeking ensembles were D1-MSNs, and specifically activated during seeking, not during extinction or when mice remained in the home cage. To compare different reward-specific ensembles within the same mouse, we used a dual cocaine and sucrose self-administration protocol allowing reward-specific seeking. Using this model, we found ~70% distinction between the cells constituting the cocaine- compared to the sucrose-seeking ensemble. Establishing that cocaine recruits an ensemble of NAcore neurons largely distinct from neurons recruited into an ensemble coding for sucrose seeking suggest a finely tuned specificity of ensembles. The findings allow further exploration of the mechanisms that transform reward-based positive reinforcement into maladaptive drug seeking.


Assuntos
Cocaína , Núcleo Accumbens , Animais , Sinais (Psicologia) , Comportamento de Procura de Droga , Extinção Psicológica , Camundongos , Ratos , Ratos Sprague-Dawley , Recompensa , Autoadministração , Sacarose
10.
J Neurosci ; 39(11): 2041-2051, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30622165

RESUMO

Outputs from the nucleus accumbens (NAc) include projections to the ventral pallidum and the ventral tegmental area and subtantia nigra in the ventral mesencephalon. The medium spiny neurons (MSN) that give rise to these pathways are GABAergic and consist of two populations of equal number that are segregated by differentially expressed proteins, including D1- and D2-dopamine receptors. Afferents to the ventral pallidum arise from both D1- and D2-MSNs, whereas the ventral mesencephalon is selectively innervated by D1-MSN. To determine the extent of collateralization of D1-MSN to these axon terminal fields we used retrograde labeling in transgenic mice expressing tdTomato selectively in D1-MSN, and found that a large majority of D1-MSN in either the shell or core subcompartments of the accumbens collateralized to both output structures. Approximately 70% of D1-MSNs projecting to the ventral pallidum collateralized to the ventral mesencephalon, whereas >90% of mesencephalic D1-MSN afferents collateralized to the ventral pallidum. In contrast, <10% of dorsal striatal D1-MSNs collateralized to both the globus pallidus and ventral mesencephalon. D1-MSN activation is required for conditioned cues to induce cocaine seeking. To determine which D1-MSN projection mediates cued cocaine seeking, we selectively transfected D1-MSNs in transgenic rats with an inhibitory Gi-coupled DREADD. Activation of the transfected Gi-DREADD with clozapine-N-oxide administered into the ventral pallidum, but not into the ventral mesencephalon, blocked cue-induced cocaine seeking. These data show that, although accumbens D1-MSNs largely collateralize to both the ventral pallidum and ventral mesencephalon, only D1-MSN innervation of the ventral pallidum is necessary for cue-induced cocaine seeking.SIGNIFICANCE STATEMENT Activity in D1 dopamine receptor-expressing neurons in the NAc is required for rodents to respond to cocaine-conditioned cues and relapse to drug seeking behaviors. The D1-expressing neurons project to both the ventral pallidum and ventral mesencephalon, and we found that a majority of the neurons that innervate the ventral pallidum also collateralize to the ventral mesencephalon. However, despite innervating both structures, only D1 innervation of the ventral pallidum mediates cue-induced cocaine seeking.


Assuntos
Prosencéfalo Basal/fisiologia , Cocaína/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Receptores de Dopamina D1/fisiologia , Animais , Prosencéfalo Basal/citologia , Condicionamento Clássico , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Núcleo Accumbens/citologia , Ratos Long-Evans , Ratos Transgênicos
11.
Pediatr Res ; 88(1): 77-84, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31935745

RESUMO

BACKGROUND: Neonatal abstinence syndrome (NAS) is a significant problem. Opioid withdrawal induces oxidative stress and disrupts glutamate and glutathione homeostasis. We hypothesized that N-acetylcysteine (NAC) administered during acute opioid withdrawal in neonatal rats would decrease withdrawal behaviors and normalize CNS glutathione and glutamate. METHODS: Osmotic minipumps with methadone (opioid dependent, OD) and saline (Sham) were implanted into Sprague Dawley dams 7 days prior to delivery. Pups were randomized to receive either naloxone plus saline or NAC (50-100 mg/kg), administered on postnatal day (PND) 7. We performed MR spectroscopy on PND6-7 before, 30 min, and 120 min after withdrawal. On PND7, we assessed withdrawal behaviors for 90 min after naloxone administration and summed scores during peak withdrawal period. RESULTS: Mean summed behavioral scores were significantly different between groups (χ2 (2) = 10.49, p = 0.005) but not different between NAC/NAL/OD and Sham (p = 0.14): SAL/NAL/OD = 17.2 ± 4.2 (n = 10); NAC/NAL/OD = 11.3 ± 5.6 (n = 9); Sham = 6.5 ± 0.6 (n = 4). SAL/NAL/OD pups had decreased glutathione at 120 min (p = 0.01), while NAC/NAL/OD pups maintained pre-withdrawal glutathione (p = 0.26). CONCLUSION: In antenatal OD, NAC maintains CNS glutathione and mitigates acute opioid withdrawal in neonatal rats. This is the first study to demonstrate acute opioid withdrawal neurochemical changes in vivo in neonatal OD. NAC is a potential novel treatment for NAS.


Assuntos
Acetilcisteína/farmacologia , Analgésicos Opioides/metabolismo , Síndrome de Abstinência Neonatal/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Comportamento Animal , Sistema Nervoso Central/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Espectroscopia de Ressonância Magnética , Exposição Materna , Naloxona/farmacologia , Osmose , Gravidez , Prenhez , Ratos , Ratos Sprague-Dawley
12.
BMC Psychiatry ; 20(1): 397, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762663

RESUMO

BACKGROUND: Most patients with Posttraumatic Stress Disorder (PTSD) suffer residual symptoms following first-line treatment. Oxidative stress has been implicated in the pathophysiology of PTSD. N-acetylcysteine (NAC) is a precursor of the brain's primary antioxidant, glutathione, and may diminish oxidative cellular damage. An 8-week pilot study of NAC in veterans with PTSD found that symptoms were significantly reduced in the NAC group compared to placebo. This study aims to confirm these findings with a larger sample in a double-blind, placebo-controlled trial to further explore the efficacy of NAC as an adjunctive therapy in treatment-resistant PTSD. METHODS: A multicentre, randomised, double-blind, placebo-controlled trial for adult patients who still meet criteria for PTSD following first-line treatment. The intervention comprises either NAC as a fixed dose regime of 2.7 g/day (900 mg three times daily) administered orally for 12 weeks, or placebo. Standard care for PTSD will continue in addition, including other pharmacotherapies. Detailed clinical data will be collected at randomisation and weeks 4, 8, 12, 16, and 64 post-randomisation, with self-report measures completed weekly from baseline to 16 weeks and at 64 weeks post-randomisation. Blood-based biomarkers will be collected at baseline and 12 weeks to assess the mechanism of effect. The primary outcome measure will be change in Clinician-Administered PTSD Scale for DSM-5 at 12 weeks compared with baseline. Secondary outcomes will be change in quality of life, depression, anxiety, substance use and craving, and somatic symptoms. With 126 completed participants (63 per arm), the study is powered at 80% to detect a true difference in the primary outcome measure using a two-tailed analysis with alpha = 0.05, beta = 0.2. DISCUSSION: This is the first multicentre, double blind, randomised, placebo-controlled trial of adjunctive NAC for treatment-resistant PTSD. NAC has an established safety profile, is readily available and easy to administer, and has a favourable tolerability profile, therefore making it an attractive adjunctive therapy. Inclusion of blood analyses to assess potential target engagement biomarkers of oxidative stress and neuroinflammation may help gauge the biological mechanisms of effect of NAC. TRIAL REGISTRATION: ACTRN12618001784202, retrospectively registered 31/10/2018, URL: http://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=376004 .


Assuntos
Acetilcisteína , Transtornos de Estresse Pós-Traumáticos , Acetilcisteína/uso terapêutico , Adulto , Método Duplo-Cego , Humanos , Projetos Piloto , Qualidade de Vida , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Resultado do Tratamento
13.
Addict Biol ; 25(5): e12798, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31282090

RESUMO

Converging epidemiological studies show that a life-threatening event increases the incidence of posttraumatic stress disorder (PTSD), which carries 30% to 50% comorbidity with substance use disorders (SUDs). Such comorbidity results in greater drug use and poorer treatment outcomes. There is overlap between the enduring synaptic neuroadaptations produced in nucleus accumbens core (NAcore) by acute restraint stress and cocaine self-administration. Because of these coincident neuroadaptations, we hypothesized that an odor paired with acute restraint stress would reinstate drug seeking and chose two mechanistically distinct drugs of abuse to test this hypothesis: alcohol and cocaine. Rats were trained to self-administer either drug beginning 3 weeks after odor pairing with acute stress or sham, and acute restraint stress increased alcohol consumption. Following context extinction training, the stress-paired odor reinstated both alcohol and cocaine seeking, while an unpaired odor had no effect. N-Acetylcysteine (NAC) restores drug and stress-induced reductions in glial glutamate transporter-1 and has proven effective at reducing cue-induced reinstatement of drug seeking. We administered NAC for 5 days prior to reinstatement testing and abolished the capacity of the stress-paired odor to increase alcohol and cocaine seeking. Importantly, daily NAC given during or just following experiencing acute restraint stress also prevented the capacity of stress-paired odors to reinstate alcohol and cocaine seeking and prevented stress-induced deficits in behavioral flexibility. These data support using daily NAC treatment during or immediately after experiencing a strong acute stress to prevent subsequent conditioned stress responding, in particular relapse and cognitive deficits induced by stress-conditioned stimuli.


Assuntos
Acetilcisteína/farmacologia , Transtornos Relacionados ao Uso de Álcool/complicações , Transtornos Relacionados ao Uso de Álcool/psicologia , Transtornos Relacionados ao Uso de Cocaína/complicações , Transtornos Relacionados ao Uso de Cocaína/psicologia , Estresse Psicológico/complicações , Doença Aguda , Animais , Cocaína/administração & dosagem , Sinais (Psicologia) , Modelos Animais de Doenças , Comportamento de Procura de Droga/efeitos dos fármacos , Etanol/administração & dosagem , Sequestradores de Radicais Livres/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Recidiva , Autoadministração , Estresse Psicológico/psicologia
14.
Addict Biol ; 25(6): e12843, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31733097

RESUMO

Glutamatergic plasticity in the nucleus accumbens core (NAcore) is a key neuronal process in appetitive learning and contributes to pathologies such as drug addiction. Understanding how this plasticity factors into cannabis addiction and relapse has been hampered by the lack of a rodent model of cannabis self-administration. We used intravenous self-administration of two constituents of cannabis, Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD) to examine how contingent cannabis use and cue-induced cannabinoid-seeking alters glutamatergic neurotransmission and synaptic plasticity in NAcore. NMDA receptor (NMDAR)-dependent long-term depression (LTD) in the NAcore was lost after cannabinoid, but not sucrose self-administration. Surprisingly, when rats underwent cue-induced cannabinoid seeking, LTD was restored. Loss of LTD was accompanied by desensitization of cannabinoid receptor 1 (CB1R). CB1R are positioned to regulate synaptic plasticity by being expressed on glutamatergic terminals and negatively regulating presynaptic excitability and glutamate release. Supporting this possibility, LTD was restored by promoting CB1R signaling with the CB1 positive allosteric modulator GAT211. These data implicate NAcore CB1R as critical regulators of metaplasticity induced by cannabis self-administration and the cues predicting cannabis availability.


Assuntos
Canabidiol/farmacologia , Canabinoides/farmacologia , Dronabinol/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Receptores de N-Metil-D-Aspartato/fisiologia , Regulação Alostérica/efeitos dos fármacos , Animais , Comportamento Aditivo/induzido quimicamente , Canabidiol/administração & dosagem , Agonistas de Receptores de Canabinoides/administração & dosagem , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/administração & dosagem , Dronabinol/administração & dosagem , Ácido Glutâmico/metabolismo , Indóis/administração & dosagem , Indóis/farmacologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Autoadministração , Transmissão Sináptica/efeitos dos fármacos
15.
Addict Biol ; 25(3): e12759, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31062493

RESUMO

Repeated exposure to drug-associated cues without reward (extinction) leads to refraining from drug seeking in rodents. We determined if refraining is associated with transient synaptic plasticity (t-SP) in nucleus accumbens shell (NAshell), akin to the t-SP measured in the NAcore during cue-induced reinstatement of drug seeking. Using whole cell patch electrophysiology, we found that medium spiny neurons (MSNs) in NAshell expressed increased ratio of AMPA to NMDA glutamate receptor currents during refraining, which normalized to baseline levels by the end of the 2-hour extinction session. Unlike t-SP observed in NAcore during reinstated drug seeking, neither dendrite spine head enlargement nor activation of matrix metalloproteases (MMP2/9) accompanied the increased AMPA:NMDA in NAshell during refraining. Refraining was also not associated with changes in paired pulse ratio, NMDA receptor current decay time, or AMPA receptor rectification index in NAshell MSNs. Our preliminary data in transgenic mice suggest that t-SP may increase D2-MSN inputs relative to D1-MSN inputs.


Assuntos
Cocaína/administração & dosagem , Espinhas Dendríticas/metabolismo , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga , Extinção Psicológica , Plasticidade Neuronal , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Animais , Sinais (Psicologia) , Espinhas Dendríticas/patologia , Ácido Glutâmico/metabolismo , Camundongos , N-Metilaspartato/metabolismo , Neurônios/patologia , Núcleo Accumbens/patologia , Ratos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais Sinápticos , Transmissão Sináptica , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
16.
J Neurosci ; 38(32): 7100-7107, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29976626

RESUMO

Cocaine-associated cues and contexts can precipitate drug seeking in humans and in experimental animals. Glutamatergic synapses in the core subcompartment of the nucleus accumbens (NAcore) undergo transient potentiation in response to presenting drug-associated cues. The NAcore contains two populations of medium spiny neurons (MSNs) that differentially express D1 or D2 dopamine receptors. By recording the ratio of AMPA and NMDA glutamate receptor currents (AMPA/NMDA ratio) from MSNs in NAcore tissue slices, we endeavored to understand which subpopulation of MSNs was undergoing transient potentiation. Transgenic female and male mice differentially expressing fluorescent reporters in D1 or D2 MSNs were withdrawn for 2-3 weeks after being trained to self-administer cocaine. In some mice, discrete cocaine-conditioned cues were isolated from the drug-associated context via extinction training, which causes rodents to refrain from drug seeking in the extinguished context. By measuring AMPA/NMDA ratios in the drug context with or without contextual or discrete cues, and with or without extinction training, we made the following three discoveries: (1) mice refraining from cocaine seeking in the extinguished context showed selective elevation in AMPA/NMDA ratios in D2 MSNs; (2) without extinction training, the drug-associated context selectively increased AMPA/NMDA ratios in D1 MSNs; (3) mice undergoing cue-induced cocaine seeking after extinction training in the drug-associated context showed AMPA/NMDA ratio increases in both D1 and D2 MSNs. These findings reveal that the NAcore codes drug seeking through transient potentiation of D1 MSNs, and that refraining from cocaine seeking in an extinguished context is coded through transient potentiation of D2 MSNs.SIGNIFICANCE STATEMENT Relapse is a primary symptom of addiction that can involve competition between the desire to use drugs and the desire to refrain from using drugs. Drug-associated cues induce relapse, which is correlated with transiently potentiated glutamatergic synapses in the nucleus accumbens core. We determined which of two cell populations in the accumbens core, D1-expressing or D2-expressing neurons, undergo transient synaptic potentiation. After being trained to self-administer cocaine, mice underwent withdrawal, some with and others without extinguishing responding in the drug-associated context. Extinguished mice showed transient potentiation in D2-expressing neurons in the extinguished environment, and all mice engaged in context-induced or cue-induced drug seeking showed transient potentiation of D1-expressing neurons. A simple binary engram in accumbens for seeking drugs and refraining from drugs offers opportunities for cell-specific therapies.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Cocaína/efeitos adversos , Neurônios Dopaminérgicos/fisiologia , Comportamento de Procura de Droga/fisiologia , Núcleo Accumbens/citologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Animais , Cocaína/administração & dosagem , Condicionamento Operante , Sinais (Psicologia) , Neurônios Dopaminérgicos/química , Neurônios Dopaminérgicos/classificação , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Extinção Psicológica , Genes Reporter , Masculino , Camundongos , Camundongos Transgênicos , Núcleo Accumbens/fisiologia , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/fisiologia , Receptores Dopaminérgicos/análise , Receptores de Dopamina D1/análise , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/análise , Receptores de Dopamina D2/genética , Receptores de N-Metil-D-Aspartato/fisiologia , Autoadministração , Sinapses/fisiologia
17.
J Neurosci ; 38(17): 4212-4229, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29636392

RESUMO

Cocaine addicts display increased sensitivity to drug-associated cues, due in part to changes in the prelimbic prefrontal cortex (PL-PFC). The cellular mechanisms underlying cue-induced reinstatement of cocaine seeking remain unknown. Reinforcement learning for addictive drugs may produce persistent maladaptations in intrinsic excitability within sparse subsets of PFC pyramidal neurons. Using a model of relapse in male rats, we sampled >600 neurons to examine spike frequency adaptation (SFA) and afterhyperpolarizations (AHPs), two systems that attenuate low-frequency inputs to regulate neuronal synchronization. We observed that training to self-administer cocaine or nondrug (sucrose) reinforcers decreased SFA and AHPs in a subpopulation of PL-PFC neurons. Only with cocaine did the resulting hyperexcitability persist through extinction training and increase during reinstatement. In neurons with intact SFA, dopamine enhanced excitability by inhibiting Kv7 potassium channels that mediate SFA. However, dopamine effects were occluded in neurons from cocaine-experienced rats, where SFA and AHPs were reduced. Pharmacological stabilization of Kv7 channels with retigabine restored SFA and Kv7 channel function in neuroadapted cells. When microinjected bilaterally into the PL-PFC 10 min before reinstatement testing, retigabine reduced cue-induced reinstatement of cocaine seeking. Last, using cFos-GFP transgenic rats, we found that the loss of SFA correlated with the expression of cFos-GFP following both extinction and re-exposure to drug-associated cues. Together, these data suggest that cocaine self-administration desensitizes inhibitory Kv7 channels in a subpopulation of PL-PFC neurons. This subpopulation of neurons may represent a persistent neural ensemble responsible for driving drug seeking in response to cues.SIGNIFICANCE STATEMENT Long after the cessation of drug use, cues associated with cocaine still elicit drug-seeking behavior, in part by activation of the prelimbic prefrontal cortex (PL-PFC). The underlying cellular mechanisms governing these activated neurons remain unclear. Using a rat model of relapse to cocaine seeking, we identified a population of PL-PFC neurons that become hyperexcitable following chronic cocaine self-administration. These neurons show persistent loss of spike frequency adaptation, reduced afterhyperpolarizations, decreased sensitivity to dopamine, and reduced Kv7 channel-mediated inhibition. Stabilization of Kv7 channel function with retigabine normalized neuronal excitability, restored Kv7 channel currents, and reduced drug-seeking behavior when administered into the PL-PFC before reinstatement. These data highlight a persistent adaptation in a subset of PL-PFC neurons that may contribute to relapse vulnerability.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Sinais (Psicologia) , Comportamento de Procura de Droga , Canais de Potássio KCNQ/metabolismo , Córtex Pré-Frontal/fisiologia , Potenciais de Ação , Adaptação Fisiológica , Animais , Carbamatos/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Masculino , Moduladores de Transporte de Membrana/farmacologia , Fenilenodiaminas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley
18.
Eur J Neurosci ; 50(3): 2538-2551, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30144182

RESUMO

Substance use disorder (SUD) is a chronic relapsing disorder characterized by transitioning from acute drug reward to compulsive drug use. Despite the heavy personal and societal burden of SUDs, current treatments are limited and unsatisfactory. For this reason, a deeper understanding of the mechanisms underlying addiction is required. Altered redox status, primarily due to drug-induced increases in dopamine metabolism, is a unifying feature of abused substances. In recent years, knowledge of the effects of oxidative stress in the nervous system has evolved from strictly neurotoxic to include a more nuanced role in redox-sensitive signaling. More specifically, S-glutathionylation, a redox-sensitive post-translational modification, has been suggested to influence the response to drugs of abuse. In this review we will examine the evidence for redox-mediating drugs as therapeutic tools focusing on N-acetylcysteine as a treatment for cocaine addiction. We will conclude by suggesting future research directions that may further advance this field.


Assuntos
Acetilcisteína/administração & dosagem , Acetilcisteína/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Estresse Oxidativo/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Glutationa/análogos & derivados , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Humanos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
19.
Addict Biol ; 24(5): 860-873, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890020

RESUMO

Brain-derived neurotrophic factor (BDNF) regulates a variety of physiological processes, and several studies have explored the role of BDNF in addiction-related brain regions like the nucleus accumbens core (NAcore). We sought to understand the rapid effects of endogenous BDNF on cocaine seeking. Rats were trained to self-administer cocaine and extinguished. We then microinjected two inhibitors of BDNF stimulation of tropomyosin receptor kinase B (TrkB), the non-competitive receptor antagonist ANA-12 and TrkB/Fc, a fusion protein that binds BDNF and prevents TrkB stimulation. Blocking TrkB or inactivating BDNF in NAcore potentiated active lever pressing, showing that endogenous BDNF tone was present and supplying inhibitory tone on cue-induced reinstatement. To determine if exogenous BDNF also negatively regulated reinstatement, BDNF was microinjected into NAcore 15 minutes before cue-induced reinstatement. BDNF decreased cocaine seeking through TrkB receptor binding, but had no effect on inactive lever pressing, spontaneous or cocaine-induced locomotion, or on reinstated sucrose seeking. BDNF-infusion potentiated within trial extinction when microinjected in the NAcore during cue- and context + cue induced reinstatement, and the inhibition of lever pressing lasted at least 3 days post injection. Although decreased reinstatement endured for 3 days when BDNF was administered prior to a reinstatement session, when microinjected before an extinction session or in the home cage, BDNF did not alter subsequent cued-reinstatement. Together, these data show that endogenous BDNF acts on TrKB to provide inhibitory tone on reinstated cocaine seeking, and this effect was recapitulated by exogenous BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Comportamento de Procura de Droga/fisiologia , Análise de Variância , Animais , Azepinas/farmacologia , Benzamidas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Cocaína/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Sinais (Psicologia) , Inibidores da Captação de Dopamina/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor trkB/antagonistas & inibidores , Receptor trkB/farmacologia , Esquema de Reforço , Autoadministração , Sacarose/farmacologia , Edulcorantes/farmacologia
20.
J Neurosci ; 37(4): 757-767, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28123013

RESUMO

Distinct populations of D1- and D2-dopamine receptor-expressing medium spiny neurons (D1-/D2-MSNs) comprise the nucleus accumbens, and activity in D1-MSNs promotes, whereas activity in D2-MSNs inhibits, motivated behaviors. We used chemogenetics to extend D1-/D2-MSN cell specific regulation to cue-reinstated cocaine seeking in a mouse model of self-administration and relapse, and found that either increasing activity in D1-MSNs or decreasing activity in D2-MSNs augmented cue-induced reinstatement. Both D1- and D2-MSNs provide substantial GABAergic innervation to the ventral pallidum, and chemogenetic inhibition of ventral pallidal neurons blocked the augmented reinstatement elicited by chemogenetic regulation of either D1- or D2-MSNs. Because D1- and D2-MSNs innervate overlapping populations of ventral pallidal neurons, we next used optogenetics to examine whether changes in synaptic plasticity in D1- versus D2-MSN GABAergic synapses in the ventral pallidum could explain the differential regulation of VP activity. In mice trained to self-administer cocaine, GABAergic LTD was abolished in D2-, but not in D1-MSN synapses. A µ opioid receptor antagonist restored GABA currents in D2-, but not D1-MSN synapses of cocaine-trained mice, indicating that increased enkephalin tone on presynaptic µ opioid receptors was responsible for occluding the LTD. These results identify a behavioral function for D1-MSN innervation of the ventral pallidum, and suggest that losing LTDGABA in D2-MSN, but not D1-MSN input to ventral pallidum may promote cue-induced reinstatement of cocaine-seeking. SIGNIFICANCE STATEMENT: More than 90% of ventral striatum is composed of two cell types, those expressing dopamine D1 or D2 receptors, which exert opposing roles on motivated behavior. Both cell types send GABAergic projections to the ventral pallidum and were found to differentially promote cue-induced reinstatement of cocaine seeking via the ventral pallidum. Furthermore, after cocaine self-administration, synaptic plasticity was selectively lost in D2, but not D1 inputs to the ventral pallidum. The selective impairment in D2 afferents may promote the influence of D1 inputs to drive relapse to cocaine seeking.


Assuntos
Cocaína/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Globo Pálido/metabolismo , Plasticidade Neuronal/fisiologia , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/biossíntese , Animais , Comportamento de Procura de Droga/efeitos dos fármacos , Feminino , Globo Pálido/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Autoadministração , Somatostatina/análogos & derivados , Somatostatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA