Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36772104

RESUMO

Spectroscopy is a widely used technique that can contribute to food quality assessment in a simple and inexpensive way. Especially in grape production, the visible and near infrared (VNIR) and the short-wave infrared (SWIR) regions are of great interest, and they may be utilized for both fruit monitoring and quality control at all stages of maturity. The aim of this work was the quantitative estimation of the wine grape ripeness, for four different grape varieties, by using a highly accurate contact probe spectrometer that covers the entire VNIR-SWIR spectrum (350-2500 nm). The four varieties under examination were Chardonnay, Malagouzia, Sauvignon-Blanc, and Syrah and all the samples were collected over the 2020 and 2021 harvest and pre-harvest phenological stages (corresponding to stages 81 through 89 of the BBCH scale) from the vineyard of Ktima Gerovassiliou located in Northern Greece. All measurements were performed in situ and a refractometer was used to measure the total soluble solids content (°Brix) of the grapes, providing the ground truth data. After the development of the grape spectra library, four different machine learning algorithms, namely Partial Least Squares regression (PLS), Random Forest regression, Support Vector Regression (SVR), and Convolutional Neural Networks (CNN), coupled with several pre-treatment methods were applied for the prediction of the °Brix content from the VNIR-SWIR hyperspectral data. The performance of the different models was evaluated using a cross-validation strategy with three metrics, namely the coefficient of the determination (R2), the root mean square error (RMSE), and the ratio of performance to interquartile distance (RPIQ). High accuracy was achieved for Malagouzia, Sauvignon-Blanc, and Syrah from the best models developed using the CNN learning algorithm (R2>0.8, RPIQ≥4), while a good fit was attained for the Chardonnay variety from SVR (R2=0.63, RMSE=2.10, RPIQ=2.24), proving that by using a portable spectrometer the in situ estimation of the wine grape maturity could be provided. The proposed methodology could be a valuable tool for wine producers making real-time decisions on harvest time and with a non-destructive way.


Assuntos
Vitis , Vinho , Vitis/química , Vinho/análise , Inteligência Artificial , Açúcares/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Carboidratos/análise , Frutas/química
2.
Sensors (Basel) ; 23(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067909

RESUMO

In the pursuit of enhancing the wine production process through the utilization of new technologies in viticulture, this study presents a novel approach for the rapid assessment of wine grape maturity levels using non-destructive, in situ infrared spectroscopy and artificial intelligence techniques. Building upon our previous work focused on estimating sugar content (∘Brix) from the visible and near-infrared (VNIR) and short-wave infrared (SWIR) regions, this research expands its scope to encompass pH and titratable acidity, critical parameters determining the grape maturity degree, and in turn, wine quality, offering a more representative estimation pathway. Data were collected from four grape varieties-Chardonnay, Malagouzia, Sauvignon Blanc, and Syrah-during the 2023 harvest and pre-harvest phenological stages in the vineyards of Ktima Gerovassiliou, northern Greece. A comprehensive spectral library was developed, covering the VNIR-SWIR spectrum (350-2500 nm), with measurements performed in situ. Ground truth data for pH, titratable acidity, and sugar content were obtained using conventional laboratory methods: total soluble solids (TSS) (∘Brix) by refractometry, titratable acidity by titration (expressed as mg tartaric acid per liter of must) and pH by a pH meter, analyzed at different maturation stages in the must samples. The maturity indicators were predicted from the point hyperspectral data by employing machine learning algorithms, including Partial Least Squares regression (PLS), Random Forest regression (RF), Support Vector Regression (SVR), and Convolutional Neural Networks (CNN), in conjunction with various pre-processing techniques. Multi-output models were also considered to simultaneously predict all three indicators to exploit their intercorrelations. A novel multi-input-multi-output CNN model was also proposed, incorporating a multi-head attention mechanism and enabling the identification of the spectral regions it focuses on, and thus having a higher interpretability degree. Our results indicate high accuracy in the estimation of sugar content, pH, and titratable acidity, with the best models yielding mean R2 values of 0.84, 0.76, and 0.79, respectively, across all properties. The multi-output models did not improve the prediction results compared to the best single-output models, and the proposed CNN model was on par with the next best model. The interpretability analysis highlighted that the CNN model focused on spectral regions associated with the presence of sugars (i.e., glucose and fructose) and of the carboxylic acid group. This study underscores the potential of portable spectrometry for real-time, non-destructive assessments of wine grape maturity, thereby providing valuable tools for informed decision making in the wine production industry. By integrating pH and titratable acidity into the analysis, our approach offers a holistic view of grape quality, facilitating more comprehensive and efficient viticultural practices.


Assuntos
Vitis , Vinho , Vitis/química , Vinho/análise , Açúcares/análise , Inteligência Artificial , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Frutas/química , Carboidratos/análise , Redes Neurais de Computação , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA