Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Spinal Cord ; 54(12): 1145-1151, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27241449

RESUMO

BACKGROUND: Automated sensor-based assessments of upper extremity (UE) function after cervical spinal cord injury (SCI) could provide more detailed tracking of individual recovery profiles than is possible with existing assessments, and optimize the delivery and assessment of new interventions. The design of reliable automated assessments requires identifying the key variables that need to be measured to meaningfully quantify UE function. An unanswered question is to what extent measures of sensorimotor impairment can quantitatively predict performance on functional tasks. OBJECTIVE: The objective was to define the predictive value of impairment measures for concurrent functional task performance in traumatic cervical SCI, as measured by the Graded Redefined Assessment of Strength, Sensibility and Prehension (GRASSP). SETTING: Retrospective analysis. METHODS: A data set of 138 GRASSP assessments was analyzed. The Strength and Sensation modules were used as measures of impairment, whereas the concurrent Prehension Performance module was used as the surrogate measure of function. Classifiers were trained to predict the scores on each of the six individual tasks in the Prehension Performance module. The six scores were added to obtain a total score. RESULTS: The Spearman's ρ between predicted and actual total Prehension Performance scores was 0.84. Predictions using both the Strength and Sensation scores were not found to be superior to predictions using the Strength scores alone. CONCLUSIONS: Measures of UE motor impairment are highly predictive of functional task performance after cervical SCI. Automated sensor-based assessments of UE motor function after SCI can rely on measuring only impairment and estimating functional performance accordingly.


Assuntos
Acelerometria/métodos , Medula Cervical/lesões , Atividade Motora/fisiologia , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/fisiopatologia , Extremidade Superior/fisiopatologia , Acelerometria/instrumentação , Medula Cervical/fisiopatologia , Estudos Transversais , Avaliação da Deficiência , Humanos , Estudos Longitudinais , Aprendizado de Máquina , Prognóstico , Recuperação de Função Fisiológica/fisiologia , Estudos Retrospectivos
2.
AJNR Am J Neuroradiol ; 38(6): 1266-1273, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28428212

RESUMO

BACKGROUND AND PURPOSE: T2*-weighted imaging provides sharp contrast between spinal cord GM and WM, allowing their segmentation and cross-sectional area measurement. Injured WM demonstrates T2*WI hyperintensity but requires normalization for quantitative use. We introduce T2*WI WM/GM signal-intensity ratio and compare it against cross-sectional area, the DTI metric fractional anisotropy, and magnetization transfer ratio in degenerative cervical myelopathy. MATERIALS AND METHODS: Fifty-eight patients with degenerative cervical myelopathy and 40 healthy subjects underwent 3T MR imaging, covering C1-C7. Metrics were automatically extracted at maximally compressed and uncompressed rostral/caudal levels. Normalized metrics were compared with t tests, area under the curve, and logistic regression. Relationships with clinical measures were analyzed by using Pearson correlation and multiple linear regression. RESULTS: The maximally compressed level cross-sectional area demonstrated superior differences (P = 1 × 10-13), diagnostic accuracy (area under the curve = 0.890), and univariate correlation with the modified Japanese Orthopedic Association score (0.66). T2*WI WM/GM showed strong differences (rostral: P = 8 × 10-7; maximally compressed level: P = 1 × 10-11; caudal: P = 1 × 10-4), correlations (modified Japanese Orthopedic Association score; rostral: -0.52; maximally compressed level: -0.59; caudal: -0.36), and diagnostic accuracy (rostral: 0.775; maximally compressed level: 0.860; caudal: 0.721), outperforming fractional anisotropy and magnetization transfer ratio in most comparisons and cross-sectional area at rostral/caudal levels. Rostral T2*WI WM/GM showed the strongest correlations with focal motor (-0.45) and sensory (-0.49) deficits and was the strongest independent predictor of the modified Japanese Orthopedic Association score (P = .01) and diagnosis (P = .02) in multivariate models (R2 = 0.59, P = 8 × 10-13; area under the curve = 0.954, respectively). CONCLUSIONS: T2*WI WM/GM shows promise as a novel biomarker of WM injury. It detects damage in compressed and uncompressed regions and contributes substantially to multivariate models for diagnosis and correlation with impairment. Our multiparametric approach overcomes limitations of individual measures, having the potential to improve diagnostics, monitor progression, and predict outcomes.


Assuntos
Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Traumatismos da Medula Espinal/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Anatomia Transversal , Anisotropia , Imagem de Tensor de Difusão , Avaliação da Deficiência , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Compressão da Medula Espinal/diagnóstico por imagem
3.
AJNR Am J Neuroradiol ; 38(6): 1257-1265, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28428213

RESUMO

BACKGROUND AND PURPOSE: DTI, magnetization transfer, T2*-weighted imaging, and cross-sectional area can quantify aspects of spinal cord microstructure. However, clinical adoption remains elusive due to complex acquisitions, cumbersome analysis, limited reliability, and wide ranges of normal values. We propose a simple multiparametric protocol with automated analysis and report normative data, analysis of confounding variables, and reliability. MATERIALS AND METHODS: Forty healthy subjects underwent T2WI, DTI, magnetization transfer, and T2*WI at 3T in <35 minutes using standard hardware and pulse sequences. Cross-sectional area, fractional anisotropy, magnetization transfer ratio, and T2*WI WM/GM signal intensity ratio were calculated. Relationships between MR imaging metrics and age, sex, height, weight, cervical cord length, and rostrocaudal level were analyzed. Test-retest coefficient of variation measured reliability in 24 DTI, 17 magnetization transfer, and 16 T2*WI datasets. DTI with and without cardiac triggering was compared in 10 subjects. RESULTS: T2*WI WM/GM showed lower intersubject coefficient of variation (3.5%) compared with magnetization transfer ratio (5.8%), fractional anisotropy (6.0%), and cross-sectional area (12.2%). Linear correction of cross-sectional area with cervical cord length, fractional anisotropy with age, and magnetization transfer ratio with age and height led to decreased coefficients of variation (4.8%, 5.4%, and 10.2%, respectively). Acceptable reliability was achieved for all metrics/levels (test-retest coefficient of variation < 5%), with T2*WI WM/GM comparing favorably with fractional anisotropy and magnetization transfer ratio. DTI with and without cardiac triggering showed no significant differences for fractional anisotropy and test-retest coefficient of variation. CONCLUSIONS: Reliable multiparametric assessment of spinal cord microstructure is possible by using clinically suitable methods. These results establish normalization procedures and pave the way for clinical studies, with the potential for improving diagnostics, objectively monitoring disease progression, and predicting outcomes in spinal pathologies.


Assuntos
Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/ultraestrutura , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Traumatismos da Medula Espinal/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem , Medula Espinal/ultraestrutura , Adulto , Idoso , Anatomia Transversal , Anisotropia , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Coração/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Valores de Referência , Reprodutibilidade dos Testes , Adulto Jovem
4.
Neurology ; 58(5): 794-801, 2002 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-11889245

RESUMO

BACKGROUND: The nature of the adaptive changes that occur in the cerebral cortex following injury to the cervical spinal cord are largely unknown. OBJECTIVE: To investigate these adaptive changes by examining the relationship between the motor cortical representation of the paretic right upper extremity compared with that of the tongue. The tongue was selected because the spinal cord injury (SCI) does not affect its movement and the cortical representation of the tongue is adjacent to that of the paretic upper extremity. METHODS: FMRI was used to map cortical representations associated with simple motor tasks of the right upper extremity and tongue in 14 control subjects and 9 patients with remote (>5.5 months) cervical SCI. RESULTS: The mean value for the site of maximum cortical activation during upper limb movement was identical between the two groups. The site of maximum left hemispheric cortical activation during tongue movement was 12.8 mm (p < 0.01) medial and superior to that of control subjects, indicating the presence of a shift in cortical activation. CONCLUSION: The findings indicate that the adult motor cortex does indeed adapt following cervical SCI. The nature of the adaptation and the underlying biological mechanisms responsible for this change require further investigation.


Assuntos
Adaptação Fisiológica , Córtex Motor/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Adolescente , Adulto , Idoso , Vértebras Cervicais , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Atividade Motora , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA