Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 142(24): 245101, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26133456

RESUMO

The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Simulação de Dinâmica Molecular , Ligantes , Ligação Proteica , Estrutura Terciária de Proteína
2.
J Phys Chem A ; 114(43): 11450-61, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-20932051

RESUMO

Nonequilibrium molecular dynamics (MD) simulations and instantaneous normal mode (INMs) analyses are used to study the vibrational relaxation of the C-H stretching modes (ν(s)(CH3)) of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. The INMs are identified unequivocally in terms of the equilibrium normal modes (ENMs), or groups of them, using a restricted version of the recently proposed Min-Cost assignment method. After excitation of the parent ν(s)(CH3) modes with one vibrational quantum, the vibrational energy is shown to dissipate through both intramolecular vibrational redistribution (IVR) and intermolecular vibrational energy transfer (VET). The decay of the vibrational energy of the ν(s)(CH3) modes is well fitted to a triple exponential function, with each characterizing a well-defined stage of the entire relaxation process. The first, and major, relaxation stage corresponds to a coherent ultrashort (τ(rel) = 0.07 ps) energy transfer from the parent ν(s)(CH3) modes to the methyl bending modes δ(CH3), so that the initially excited state rapidly evolves into a mixed stretch-bend state. In the second stage, characterized by a time of 0.92 ps, the vibrational energy flows through IVR to a number of mid-range-energy vibrations of the solute. In the third stage, the vibrational energy accumulated in the excited modes dissipates into the bath through an indirect VET process mediated by lower-energy modes, on a time scale of 10.6 ps. All the specific relaxation channels participating in the whole relaxation process are properly identified. The results from the simulations are finally compared with the recent experimental measurements of the ν(s)(CH3) vibrational energy relaxation in NMAD/D2O(l) reported by Dlott et al. (J. Phys. Chem. A 2009, 113, 75.) using ultrafast infrared-Raman spectroscopy.


Assuntos
Acetamidas/química , Óxido de Deutério/química , Simulação de Dinâmica Molecular , Transferência de Energia , Soluções , Vibração
3.
J Chem Phys ; 132(22): 224501, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20550402

RESUMO

A nonequilibrium molecular dynamics (MD) study of the vibrational relaxation of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D(2)O) solution is carried out using instantaneous normal modes (INMs). The identification of the INMs as they evolve over time, which is necessary to analyze the energy fluxes, is made by using a novel algorithm which allows us to assign unequivocally each INM to an individual equilibrium normal mode (ENM) or to a group of ENMs during the MD simulations. The time evolution of the energy stored in each INM is monitored and the occurrence of resonances during the relaxation process is then investigated. The decay of the amide I mode, initially excited with one vibrational quantum, is confirmed to fit well to a biexponential function, implying that the relaxation process involves at least two mechanisms with different rate constants. By freezing the internal motions of the solvent, it is shown that the intermolecular vibration-vibration channel to the bending modes of the solvent is closed. The INM analysis reveals then the existence of a major and faster decay channel, which corresponds to an intramolecular vibrational redistribution process and a minor, and slower, decay channel which involves the participation of the librational motions of the solvent. The faster relaxation pathway can be rationalized in turn using a sequential kinetic mechanism of the type P-->M+L-->L, where P (parent) is the initially excited amide I mode, and M (medium) and L (low) are specific midrange and lower-frequency NMAD vibrational modes, respectively.

4.
J Phys Chem B ; 116(9): 2969-80, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22304000

RESUMO

Hybrid quantum/classical molecular dynamics (MD) is applied to simulate the vibrational relaxation (VR) of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D(2)O) solution. A novel version of the vibrational molecular dynamics with quantum transitions (MDQT) treatment is developed in which the amide I mode is treated quantum mechanically while the remaining degrees of freedom are treated classically. The instantaneous normal modes of the initially excited NMAD molecule (INM(0)) are used as internal coordinates since they provide a proper initial partition of the system in quantum and classical subsystems. The evolution in time of the energy stored in each individual normal mode is subsequently quantified using the hybrid quantum-classical instantaneous normal modes (INM(t)). The identities of both the INM(0)s and the INM(t)s are tracked using the equilibrium normal modes (ENMs) as templates. The results extracted from the hybrid MDQT simulations show that the quantum treatment of the amide I mode accelerates the whole VR process versus pure classical simulations and gives better agreement with experiments. The relaxation of the amide I mode is found to be essentially an intramolecular vibrational redistribution (IVR) process with little contribution from the solvent, in agreement with previous theoretical and experimental studies. Two well-defined relaxation mechanisms are identified. The faster one accounts for ≈40% of the total vibrational energy that flows through the NMAD molecule and involves the participation of the lowest frequency vibrations as short-life intermediate modes. The second and slower mechanism accounts for the remaining ≈60% of the energy released and is associated to the energy flow through specific mid-range and high-frequency modes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA