Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(5): 2138-2148, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37079077

RESUMO

Biopolymer-based drug delivery systems have gained considerable attention in the field of nanomedicine. In this study, a protein-polysaccharide conjugate was synthesized by covalent conjugation of the enzyme horseradish peroxidase (HRP) with acetalated dextran (AcDex) via a thiol exchange reaction. The resulting bioconjugate shows a dual-responsive behavior in acidic and reductive environments to achieve a controlled release of drugs. The self-assembly of this amphiphilic HRP-AcDex conjugate allows the encapsulation of prodrug indole-3-acetic acid (IAA) into the hydrophobic polysaccharide core. Under slightly acidic conditions, the acetalated polysaccharide reverts to its native hydrophilic form, which triggers the disassembly of micellar nanoparticles and the release of the encapsulated prodrug. The conjugated HRP further activates the prodrug by oxidation of IAA into cytotoxic radicals, which leads to cellular apoptosis. The results indicate that the HRP-AcDex conjugate in combination with IAA has great potential to be used as a novel enzyme prodrug therapy for cancer treatment.


Assuntos
Antineoplásicos , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/química , Apoptose , Peroxidase do Rábano Silvestre/química , Polissacarídeos/farmacologia
2.
Angew Chem Int Ed Engl ; 62(44): e202216097, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36917017

RESUMO

Proteins and enzymes are versatile biomaterials for a wide range of medical applications due to their high specificity for receptors and substrates, high degradability, low toxicity, and overall good biocompatibility. Protein nanoparticles are formed by the arrangement of several native or modified proteins into nanometer-sized assemblies. In this review, we will focus on artificial nanoparticle systems, where proteins are the main structural element and not just an encapsulated payload. While under natural conditions, only certain proteins form defined aggregates and nanoparticles, chemical modifications or a change in the physical environment can further extend the pool of available building blocks. This allows the assembly of many globular proteins and even enzymes. These advances in preparation methods led to the emergence of new generations of nanosystems that extend beyond transport vehicles to diverse applications, from multifunctional drug delivery to imaging, nanocatalysis and protein therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Nanopartículas/química , Proteínas/química , Materiais Biocompatíveis
3.
Biochemistry ; 59(19): 1845-1853, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32320213

RESUMO

The synthesis and physicochemical characterization of supramolecular polymers with tunable assembly profiles offer exciting opportunities, involving the development of new biomedical carriers. Because synthetic nanocarriers aim to transport substances across or toward cellular membranes, we evaluated the interactions of amphiphilic peptide-based supramolecular polymers with lipid bilayers. Here, we focused on nanorod-like supramolecular polymers, obtained from two C3-symmetric dendritic peptide amphiphiles with alternating Phe/His sequences, equipped with a peripheral tetraethylene glycol dendron (C3-PH) or charged ethylenediamine end groups (C3-PH+). Triggered by pH changes, these amphiphiles assemble reversibly. Our results show that the supramolecular polymers have an impact on the lipid order in model membranes. Changes in the lipid order were observed depending on the charge state of the amphiphilic building blocks, as well as the chemical composition and physical properties of the bilayer. Furthermore, we further performed cell viability assays with the C3-PH+ and C3-PH supramolecular polymers. For C3-PH, the cell viability and extent of proliferation were decreased and the membrane permeability was enhanced, indicating a strong interaction of the polymer with cellular membranes. The results have implications for the design of novel pH-switchable supramolecular drug carriers and delivery vehicles that can respond to an altered microenvironment of tumorous or inflamed tissue.


Assuntos
Permeabilidade da Membrana Celular , Bicamadas Lipídicas/química , Peptídeos/química , Polímeros/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Estrutura Molecular , Nanotubos/química , Tamanho da Partícula , Peptídeos/farmacologia , Polímeros/farmacologia , Propriedades de Superfície
4.
RSC Med Chem ; 15(6): 2037-2044, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911155

RESUMO

Functional dyspepsia (FD) is a gastrointestinal disorder characterized by postprandial fullness, upper abdominal bloating, and early satiation. Peripheral acetylcholinesterase (AChE) inhibitors such as acotiamide have shown efficacy in FD treatment, but their limited affinity towards the enzyme has hindered their effectiveness. Conversely, AChE inhibitors developed for Alzheimer's disease have high potency but exhibit strong central activity, making them unsuitable for FD treatment. In this study, we developed potent AChE inhibitors based on a donepezil and a phthalimide scaffold that contain additional amine groups. Our compounds demonstrate IC50 values in the low to mid-nanomolar range. Computational modelling was employed to determine important molecular interactions with AChE. The compounds show low membrane permeability, which indicates a significantly reduced central activity. These findings suggest that the developed inhibitors could potentially serve as promising treatments for functional dyspepsia.

5.
J Colloid Interface Sci ; 576: 356-363, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32450369

RESUMO

An increasing number of peptide drugs have been identified or synthesized in recent decades, and they have played an important role in disease treatments and scientific research. Peptide drugs have become emerging candidates in the pharmaceutical market, despite some inherent disadvantages that have hindered their further development (i.e., they are chemically and physically unstable). Considering that cold-storage conditions are not easily accessible, particularly in developing countries, it remains a significant challenge to find a facile way to enhance the stability of peptide drugs. In this study, we developed an efficient and facile strategy to provide peptide drugs a strong protection against harsh conditions by biomineralizing metal-organic frameworks (MOFs) around the peptide drugs. Our results showed that the peptides released from MOFs retained their structures and full biological activities after being exposed to high temperatures, repeated freeze-thaw cycles and enzyme degradation. This study provides an alternative method for the storage of biopharmaceuticals and for enhancing their stability under ambient conditions.


Assuntos
Estruturas Metalorgânicas , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA