Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 311(4): 151497, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33773220

RESUMO

Intestinal microbiota signal to local and distant tissues in the body. Thus, they also regulate biochemical, metabolic and immunological processes in the gut and in the pancreas. Vice versa, eating habits or the immune system of the host shape the intraluminal microbiota. Disruptions of these versatile host-microbiota interactions underlie the pathogenesis of complex immune-mediated disorders such as inflammatory bowel disease (IBD) or type 1 diabetes (T1D). Consequently, dysbiosis and increased intestinal permeability associated with both disorders change the biology of underlying tissues, as evidenced, for example, by an altered expression of surface markers such as CD101 on immune cells located at these dynamic host-microbiota interfaces. CD101, a heavily glycosylated member of the immunoglobulin superfamiliy, is predominantly detected on myeloid cells, intraepithelial lymphocytes (IELs) and regulatory T cells (Tregs) in the gut. The expression of CD101 on both myeloid cells and T lymphocytes protects from experimental enterocolitis and T1D. The improved outcome of both diseases is associated with an anti-inflammatory cytokine profile and a reduced expansion of T cells. However, distinct bacteria suppress the expression of CD101 on myeloid cells, similar as does inflammation on T cells. Thus, the reduced CD101 expression in T1D and IBD patients might be a consequence of an altered composition of the intestinal microbiota, enhanced bacterial translocation and a subsequent primining of local and systemic inflammatory immune responses.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Antígenos CD , Disbiose , Humanos , Glicoproteínas de Membrana
2.
Mucosal Immunol ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901763

RESUMO

T lymphocytes and myeloid cells express the immunoglobulin-like glycoprotein cluster of differentiation (CD)101, notably in the gut. Here, we investigated the cell-specific functions of CD101 during dextran sulfate sodium (DSS)-induced colitis and Salmonella enterica Typhimurium infection. Similar to conventional CD101-/- mice, animals with a regulatory T cell-specific Cd101 deletion developed more severe intestinal pathology than littermate controls in both models. While the accumulation of T helper 1 cytokines in a CD101-deficient environment entertained DSS-induced colitis, it impeded the replication of Salmonella as revealed by studying CD101-/- x interferon-g-/- mice. Moreover, CD101-expressing neutrophils were capable to restrain Salmonella infection in vitro and in vivo. Both cell-intrinsic and -extrinsic mechanisms of CD101 contributed to the control of bacterial growth and spreading. The CD101-dependent containment of Salmonella infection required the expression of Irg-1 and Nox2 and the production of itaconate and reactive oxygen species. The level of intestinal microbial antigens in the sera of inflammatory bowel disease patients correlated inversely with the expression of CD101 on myeloid cells, which is in line with the suppression of CD101 seen in mice following DSS application or Salmonella infection. Thus, depending on the experimental or clinical setting, CD101 helps to limit inflammatory insults or bacterial infections due to cell type-specific modulation of metabolic, immune-regulatory, and anti-microbial pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA