RESUMO
Fast, large-scale, and robust 3-dimensional (3D) fabrication techniques for patterning a variety of structures with submicrometer resolution are important in many areas of science and technology such as photonics, electronics, and mechanics with a wide range of applications from tissue engineering to nanoarchitected materials. From several promising 3D manufacturing techniques for realizing different classes of structures suitable for various applications, interference lithography with diffractive masks stands out for its potential to fabricate complex structures at fast speeds. However, the interference lithography masks demonstrated generally suffer from limitations in terms of the patterns that can be generated. To overcome some of these limitations, here we propose the metasurface-mask-assisted 3D nanofabrication which provides great freedom in patterning various periodic structures. To showcase the versatility of this platform, we design metasurface masks that generate exotic periodic lattices like gyroid, rotated cubic, and diamond structures. As a proof of concept, we experimentally demonstrate a diffractive element that can generate the diamond lattice.
RESUMO
Two-photon microscopy is a key imaging technique in life sciences due to its superior deep-tissue imaging capabilities. Light-weight and compact two-photon microscopes are of great interest because of their applications for in vivo deep brain imaging. Recently, dielectric metasurfaces have enabled a new category of small and lightweight optical elements, including objective lenses. Here we experimentally demonstrate two-photon microscopy using a double-wavelength metasurface lens. It is specifically designed to focus 820 and 605 nm light, corresponding to the excitation and emission wavelengths of the measured fluorophors, to the same focal distance. The captured two-photon images are qualitatively comparable to the ones taken by a conventional objective lens. Our metasurface lens can enable ultracompact two-photon microscopes with similar performance compared to current systems that are usually based on graded-index-lenses. In addition, further development of tunable metasurface lenses will enable fast axial scanning for volumetric imaging.
RESUMO
We report transmissive color filters based on subwavelength dielectric gratings that can replace conventional dye-based color filters used in backside-illuminated CMOS image sensor (BSI CIS) technologies. The filters are patterned in an 80 nm-thick poly silicon film on a 115 nm-thick SiO2 spacer layer. They are optimized for operating at the primary RGB colors, exhibit peak transmittance of 60-80%, and have an almost insensitive response over a ± 20° angular range. This technology enables shrinking of the pixel sizes down to near a micrometer.
RESUMO
We propose and experimentally demonstrate a planar array of optical bandpass filters composed of low loss dielectric metasurface layers sandwiched between two distributed Bragg reflectors (DBRs). The two DBRs form a Fabry-Pérot resonator whose center wavelength is controlled by the design of the transmissive metasurface layer which functions as a phase shifting element. We demonstrate an array of bandpass filters with spatially varying center wavelengths covering a wide range of operation wavelengths of 250nm around λ = 1550nm (Δλ/λ = 16%). The center wavelengths of each filter are independently controlled only by changing the in-plane geometry of the sandwiched metasurfaces, and the experimentally measured quality factors are larger than 700. The demonstrated filter array can be directly integrated on top of photodetector arrays to realize on-chip high-resolution spectrometers with free-space coupling.
RESUMO
Metasurfaces are ultrathin optical structures that manipulate optical wavefronts. Most metasurface devices which deflect light are designed for operation at a single wavelength, and their function changes as the wavelength is varied. Here we propose and demonstrate a double-wavelength metasurface based on polarization dependent dielectric meta-atoms that control the phases of two orthogonal polarizations independently. Using this platform, we design lenses that focus light at 915 and 780 nm with perpendicular linear polarizations to the same focal distance. Lenses with numerical apertures up to 0.7 and efficiencies from 65% to above 90% are demonstrated. In addition to the high efficiency and numerical aperture, an important feature of this technique is that the two operation wavelengths can be chosen to be arbitrarily close. These characteristics make these lenses especially attractive for fluorescence microscopy applications.
RESUMO
Microring and microdisk lasers are potential candidates for small footprint, low threshold in-plane integrated lasers; however, they exhibit multimode lasing spectra and bistability. Here, we theoretically propose and experimentally demonstrate a novel approach for achieving single mode lasing in microring lasers. Our approach is based on increasing the radiation loss of all but one of the resonant modes of microring resonators by integrating second order gratings on the microrings' waveguide. We present single mode operation of electrically pumped semiconductor microring lasers whose lasing modes are lithographically selected via the second order grating. We also show that adding the grating does not increase the lasing threshold current significantly.
RESUMO
One of the important advantages of optical metasurfaces over conventional diffractive optical elements is their capability to efficiently deflect light by large angles. However, metasurfaces are conventionally designed using approaches that are optimal for small deflection angles and their performance for designing high numerical aperture devices is not well quantified. Here we introduce and apply a technique for the estimation of the efficiency of high numerical aperture metasurfaces. The technique is based on a particular coherent averaging of diffraction coefficients of periodic blazed gratings and can be used to compare the performance of different metasurface designs in implementing high numerical aperture devices. Unlike optimization-based methods that rely on full-wave simulations and are only practicable in designing small metasurfaces, the gradient averaging technique allows for the design of arbitrarily large metasurfaces. Using this technique, we identify an unconventional metasurface design and experimentally demonstrate a metalens with a numerical aperture of 0.78 and a measured focusing efficiency of 77%. The grating averaging is a versatile technique applicable to many types of gradient metasurfaces, thus enabling highly efficient metasurface components and systems.
RESUMO
An optical design space that can highly benefit from the recent developments in metasurfaces is the folded optics architecture where light is confined between reflective surfaces, and the wavefront is controlled at the reflective interfaces. In this manuscript, we introduce the concept of folded metasurface optics by demonstrating a compact spectrometer made from a 1-mm-thick glass slab with a volume of 7 cubic millimeters. The spectrometer has a resolution of ~1.2 nm, resolving more than 80 spectral points from 760 to 860 nm. The device is composed of three reflective dielectric metasurfaces, all fabricated in a single lithographic step on one side of a substrate, which simultaneously acts as the propagation space for light. The folded metasystem design can be applied to many optical systems, such as optical signal processors, interferometers, hyperspectral imagers, and computational optical systems, significantly reducing their sizes and increasing their mechanical robustness and potential for integration.
RESUMO
Varifocal lenses, conventionally implemented by changing the axial distance between multiple optical elements, have a wide range of applications in imaging and optical beam scanning. The use of conventional bulky refractive elements makes these varifocal lenses large, slow, and limits their tunability. Metasurfaces, a new category of lithographically defined diffractive devices, enable thin and lightweight optical elements with precisely engineered phase profiles. Here we demonstrate tunable metasurface doublets, based on microelectromechanical systems (MEMS), with more than 60 diopters (about 4%) change in the optical power upon a 1-µm movement of one metasurface, and a scanning frequency that can potentially reach a few kHz. They can also be integrated with a third metasurface to make compact microscopes (~1 mm thick) with a large corrected field of view (~500 µm or 40 degrees) and fast axial scanning for 3D imaging. This paves the way towards MEMS-integrated metasurfaces as a platform for tunable and reconfigurable optics.
RESUMO
Recently, wavefront shaping with disordered media has demonstrated optical manipulation capabilities beyond those of conventional optics, including extended volume, aberration-free focusing and subwavelength focusing. However, translating these capabilities to useful applications has remained challenging as the input-output characteristics of the disordered media (P variables) need to be exhaustively determined via O(P) measurements. Here, we propose a paradigm shift where the disorder is specifically designed so its exact input-output characteristics are known a priori and can be used with only a few alignment steps. We implement this concept with a disorder-engineered metasurface, which exhibits additional unique features for wavefront shaping such as a large optical memory effect range in combination with a wide angular scattering range, excellent stability, and a tailorable angular scattering profile. Using this designed metasurface with wavefront shaping, we demonstrate high numerical aperture (NA > 0.5) focusing and fluorescence imaging with an estimated ~2.2×108 addressable points in an ~8 mm field of view.
RESUMO
Physical geometry and optical properties of objects are correlated: cylinders focus light to a line, spheres to a point and arbitrarily shaped objects introduce optical aberrations. Multi-functional components with decoupled geometrical form and optical function are needed when specific optical functionalities must be provided while the shapes are dictated by other considerations like ergonomics, aerodynamics or aesthetics. Here we demonstrate an approach for decoupling optical properties of objects from their physical shape using thin and flexible dielectric metasurfaces which conform to objects' surface and change their optical properties. The conformal metasurfaces are composed of silicon nano-posts embedded in a polymer substrate that locally modify near-infrared (λ=915 nm) optical wavefronts. As proof of concept, we show that cylindrical lenses covered with metasurfaces can be transformed to function as aspherical lenses focusing light to a point. The conformal metasurface concept is highly versatile for developing arbitrarily shaped multi-functional optical devices.
RESUMO
Metasurfaces are two-dimensional arrangements of optical scatterers rationally arranged to control optical wavefronts. Despite the significant advances made in wavefront engineering through metasurfaces, most of these devices are designed for and operate at a single wavelength. Here we show that spatial multiplexing schemes can be applied to increase the number of operation wavelengths. We use a high contrast dielectric transmittarray platform with amorphous silicon nano-posts to demonstrate polarization insensitive metasurface lenses with a numerical aperture of 0.46, that focus light at 915 and 1550 nm to the same focal distance. We investigate two different methods, one based on large scale segmentation and one on meta-atom interleaving, and compare their performances. An important feature of this method is its simple generalization to adding more wavelengths or new functionalities to a device. Therefore, it provides a relatively straightforward method for achieving multi-functional and multiwavelength metasurface devices.
RESUMO
Optical metasurfaces are two-dimensional arrays of nano-scatterers that modify optical wavefronts at subwavelength spatial resolution. They are poised to revolutionize optics by enabling complex low-cost systems where multiple metasurfaces are lithographically stacked and integrated with electronics. For imaging applications, metasurface stacks can perform sophisticated image corrections and can be directly integrated with image sensors. Here we demonstrate this concept with a miniature flat camera integrating a monolithic metasurface lens doublet corrected for monochromatic aberrations, and an image sensor. The doublet lens, which acts as a fisheye photographic objective, has a small f-number of 0.9, an angle-of-view larger than 60° × 60°, and operates at 850 nm wavelength with 70% focusing efficiency. The camera exhibits nearly diffraction-limited image quality, which indicates the potential of this technology in the development of optical systems for microscopy, photography, and computer vision.
RESUMO
To increase system capacity of underwater optical communications, we employ the spatial domain to simultaneously transmit multiple orthogonal spatial beams, each carrying an independent data channel. In this paper, we show up to a 40-Gbit/s link by multiplexing and transmitting four green orbital angular momentum (OAM) beams through a single aperture. Moreover, we investigate the degrading effects of scattering/turbidity, water current, and thermal gradient-induced turbulence, and we find that thermal gradients cause the most distortions and turbidity causes the most loss. We show systems results using two different data generation techniques, one at 1064 nm for 10-Gbit/s/beam and one at 520 nm for 1-Gbit/s/beam; we use both techniques since present data-modulation technologies are faster for infrared (IR) than for green. For the 40-Gbit/s link, data is modulated in the IR, and OAM imprinting is performed in the green using a specially-designed metasurface phase mask. For the 4-Gbit/s link, a green laser diode is directly modulated. Finally, we show that inter-channel crosstalk induced by thermal gradients can be mitigated using multi-channel equalisation processing.