Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Immunity ; 54(8): 1683-1697.e3, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34107298

RESUMO

Microbe-derived acetate activates the Drosophila immunodeficiency (IMD) pathway in a subset of enteroendocrine cells (EECs) of the anterior midgut. In these cells, the IMD pathway co-regulates expression of antimicrobial and enteroendocrine peptides including tachykinin, a repressor of intestinal lipid synthesis. To determine whether acetate acts on a cell surface pattern recognition receptor or an intracellular target, we asked whether acetate import was essential for IMD signaling. Mutagenesis and RNA interference revealed that the putative monocarboxylic acid transporter Tarag was essential for enhancement of IMD signaling by dietary acetate. Interference with histone deacetylation in EECs augmented transcription of genes regulated by the steroid hormone ecdysone including IMD targets. Reduced expression of the histone acetyltransferase Tip60 decreased IMD signaling and blocked rescue by dietary acetate and other sources of intracellular acetyl-CoA. Thus, microbe-derived acetate induces chromatin remodeling within enteroendocrine cells, co-regulating host metabolism and intestinal innate immunity via a Tip60-steroid hormone axis that is conserved in mammals.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Células Enteroendócrinas/metabolismo , Microbioma Gastrointestinal/imunologia , Histona Acetiltransferases/metabolismo , Intestinos/imunologia , Acetatos/imunologia , Acetilcoenzima A/metabolismo , Animais , Montagem e Desmontagem da Cromatina/fisiologia , Drosophila melanogaster/microbiologia , Ecdisona/metabolismo , Imunidade Inata/imunologia , Intestinos/microbiologia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Interferência de RNA , Transdução de Sinais/imunologia , Taquicininas/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732116

RESUMO

Hypertension is a pervasive and widespread health condition that poses a significant risk factor for cardiovascular disease, which includes conditions such as heart attack, stroke, and heart failure. Despite its widespread occurrence, the exact cause of hypertension remains unknown, and the mechanisms underlying the progression from prehypertension to hypertension require further investigation. Recent proteomic studies have shown promising results in uncovering potential biomarkers related to disease development. In this study, serum proteomic data collected from Qatar Biobank were analyzed to identify altered protein expression between individuals with normal blood pressure, prehypertension, and hypertension and to elucidate the biological pathways contributing to this disease. The results revealed a cluster of proteins, including the SRC family, CAMK2B, CAMK2D, TEC, GSK3, VAV, and RAC, which were markedly upregulated in patients with hypertension compared to those with prehypertension (fold change ≥ 1.6 or ≤-1.6, area under the curve ≥ 0.8, and q-value < 0.05). Pathway analysis showed that the majority of these proteins play a role in actin cytoskeleton remodeling. Actin cytoskeleton reorganization affects various biological processes that contribute to the maintenance of blood pressure, including vascular tone, endothelial function, cellular signaling, inflammation, fibrosis, and mechanosensing. Therefore, the findings of this study suggest a potential novel role of actin cytoskeleton-related proteins in the progression from prehypertension to hypertension. The present study sheds light on the underlying pathological mechanisms involved in hypertension and could pave the way for new diagnostic and therapeutic approaches for the treatment of this disease.


Assuntos
Citoesqueleto de Actina , Hipertensão , Proteômica , Feminino , Humanos , Masculino , Citoesqueleto de Actina/metabolismo , Biomarcadores , Pressão Sanguínea , Hipertensão/metabolismo , Pré-Hipertensão/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
3.
PLoS Pathog ; 15(11): e1008194, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31765430

RESUMO

Serine protease cascades regulate important insect immune responses namely melanization and Toll pathway activation. An important component of these cascades are clip-domain serine protease homologs (cSPHs), which are non-catalytic, but essential for activating the enzyme prophenoloxidase (PPO) in the melanization response during septic infections. The activation of cSPHs requires their proteolytic cleavage, yet factors that control their activation and the complexity of their interactions within these cascades remain unclear. Here, we report the identification of CLIPA28 as a novel immune-related cSPH in the malaria vector Anopheles gambiae. Functional genetic analysis using RNA interference (RNAi) revealed that CLIPA28 is essential for the melanization of Plasmodium berghei parasites in refractory mosquitoes, and for mosquito resistance to fungal infections. We further show, using combined biochemical and genetic approaches, that CLIPA28 is member of a network of at least four cSPHs, whereby members are activated in a hierarchical manner following septic infections. Depletion of the complement-like protein TEP1 abolished the activation of this network after septic infections, whereas, depletion of the serine protease inhibitor 2 (SRPN2) triggered enhanced network activation, even in naïve mosquitoes, culminating in a dramatic reduction in cSPHs hemolymph levels, which paralleled that of PPO. Our data suggest that cSPHs are engaged in complex and multilayered interactions within serine protease cascades that regulate melanization, and identify TEP1 and SRPN2 as two master regulators of the cSPH network.


Assuntos
Anopheles/imunologia , Imunidade Inata/imunologia , Proteínas de Insetos/imunologia , Malária/imunologia , Melaninas/imunologia , Plasmodium berghei/imunologia , Serina Proteases/imunologia , Animais , Anopheles/metabolismo , Feminino , Proteínas de Insetos/metabolismo , Malária/metabolismo , Malária/parasitologia , Melaninas/metabolismo , Serina Proteases/metabolismo
4.
PLoS Pathog ; 8(11): e1003029, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166497

RESUMO

Mosquito immunity studies have focused mainly on characterizing immune effector mechanisms elicited against parasites, bacteria and more recently, viruses. However, those elicited against entomopathogenic fungi remain poorly understood, despite the ubiquitous nature of these microorganisms and their unique invasion route that bypasses the midgut epithelium, an important immune tissue and physical barrier. Here, we used the malaria vector Anopheles gambiae as a model to investigate the role of melanization, a potent immune effector mechanism of arthropods, in mosquito defense against the entomopathogenic fungus Beauveria bassiana, using in vivo functional genetic analysis and confocal microscopy. The temporal monitoring of fungal growth in mosquitoes injected with B. bassiana conidia showed that melanin eventually formed on all stages, including conidia, germ tubes and hyphae, except the single cell hyphal bodies. Nevertheless, melanin rarely aborted the growth of any of these stages and the mycelium continued growing despite being melanized. Silencing TEP1 and CLIPA8, key positive regulators of Plasmodium and bacterial melanization in A. gambiae, abolished completely melanin formation on hyphae but not on germinating conidia or germ tubes. The detection of a layer of hemocytes surrounding germinating conidia but not hyphae suggested that melanization of early fungal stages is cell-mediated while that of late stages is a humoral response dependent on TEP1 and CLIPA8. Microscopic analysis revealed specific association of TEP1 with surfaces of hyphae and the requirement of both, TEP1 and CLIPA8, for recruiting phenoloxidase to these surfaces. Finally, fungal proliferation was more rapid in TEP1 and CLIPA8 knockdown mosquitoes which exhibited increased sensitivity to natural B. bassiana infections than controls. In sum, the mosquito melanization response retards significantly B. bassiana growth and dissemination, a finding that may be exploited to design transgenic fungi with more potent bio-control activities against mosquitoes.


Assuntos
Anopheles/imunologia , Beauveria/fisiologia , Hifas/imunologia , Melaninas/imunologia , Esporos Fúngicos/imunologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Animais Geneticamente Modificados/microbiologia , Anopheles/genética , Anopheles/microbiologia , Inativação Gênica , Hemócitos/imunologia , Hemócitos/microbiologia , Hifas/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Melaninas/genética , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Esporos Fúngicos/crescimento & desenvolvimento
5.
Biomol Biomed ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39445733

RESUMO

Atherosclerosis, a leading cause of coronary artery disease (CAD), is heavily influenced by hypercholesterolemia (HC). Proteomics research has shown promise in identifying biological markers for CAD diagnosis and prognosis. This cross-sectional study aimed to identify novel biomarkers for detecting HC and CAD. Through the analysis of proteome data from healthy controls (n=45) and patients diagnosed with HC (n=51) or CAD (n=32), distinct protein patterns associated with each condition were identified. Significant alterations in protein levels were identified with a false discovery rate (FDR)-corrected q-value of <0.05. Subsequent receiver operating characteristic (ROC) analysis, with an area under the curve (AUC) greater than 0.75, was conducted. CAD patients exhibited significantly increased levels of the cholesterol-metabolizing protein PCSK9 and varied levels of the angiogenesis-related protein SDF-1 compared to controls. In pairwise comparisons among the study groups, 65 proteins showed significant differential expression. Notably, 14 of these proteins had significant correlations with blood cholesterol levels. Additionally, 22 of the identified proteins were associated with CAD or HC pathways, with nine proteins being common to both conditions (Apo E, Apo E3, MMP-3, PCSK9, SDF-1, Apo B, PAFAH, HSP 60, and TAK1-TAB1). Nevertheless, this is an exploratory study, and validation studies are needed to confirm these potential protein biomarkers for CAD in the context of HC.

6.
Heliyon ; 10(5): e27002, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463818

RESUMO

In colorectal cancer (CRC), aberrations in KRAS are associated with aggressive tumorigenesis and an overall low survival rate because of chemoresistance and adverse effects. Ergo, complementary, and integrative medicines are being considered for CRC treatment. Among which is the use of natural chalcones that are known to exhibit anti-tumor activities in KRAS mutant CRC subtypes treatment regimens. Consequently, we examine the effect of two novel compounds (DK13 and DK14) having chalcones with nitrogen mustard moiety on CRC cell lines (HCT-116 and LoVo) with KRAS mutation. These compounds were synthesized in our lab and previously reported to exhibit potent activity against breast cancer cells. Our data revealed that DK13 and DK14 treatment suppress cell growth, disturb the progression of cell cycle, and trigger apoptosis in CRC cell lines. Besides, treatment with both compounds impedes cell invasion and colony formation in both cell lines as compared to 5-FU; this is accompanied by up and down regulations of E-cadherin and Vimentin, respectively. At the molecular level, both compounds deregulate the expression and phosphorylation of ß-catenin, Akt and mTOR, which are the main likely molecular mechanisms underlying these biological occurrences. Our findings present DK13 and DK14 as novel chemotherapies against CRC, through ß-catenin/Akt/mTOR signaling pathways.

7.
Microbes Infect ; 25(7): 105149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37169244

RESUMO

The diet-microbiome-immunity axis is one among the many arms that draw up the "we are what we intake" proclamation. As such, studies on the effect of food and beverage intake on the gut environment and microbiome and on modulating immunological responses and the host's susceptibility to pathogens are on the rise. A typical accompaniment in different sustenance we consume on daily basis is the trimethylxanthine alkaloid caffeine. Being a chief component in our regular aliment, a better understanding of the effect of caffeine containing food and beverages on our gut-microbiome-immunity axis and henceforth on our health is much needed. In this study, we shed more light on the effect of oral consumption of caffeine supplemented sugar diet on the gut environment, specifically on the gut microbiota, innate immunity and host susceptibility to pathogens using the Drosophila melanogaster model organism. Our findings reveal that the oral intake of a dose-specific caffeine containing sucrose/agarose sugar diet causes a significant alteration within the fly gut milieu demarcated by microbial dysbiosis and an elevation in the production of reactive oxygen species and expression of immune-deficiency (Imd) pathway-dependent antimicrobial peptide genes. The oral intake of caffeine containing sucrose/agarose sugar diet also renders the flies more susceptible to bacterial infection and shortens their lifespan in both infection and non-infection settings. Our findings set forth additional insight into the potentiality of diet to alter the gut milieu and highlight the importance of dietary control on health.


Assuntos
Drosophila melanogaster , Microbioma Gastrointestinal , Animais , Drosophila melanogaster/microbiologia , Cafeína/farmacologia , Longevidade , Sefarose , Sacarose
8.
Microbes Infect ; 24(4): 104946, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35093552

RESUMO

On quotidian basis, living beings work out an armistice with their microbial flora and a scuffle with invading pathogens to maintain a normal state of health. Although producing virulence factors and escaping the host's immune machinery are the paramount tools used by pathogens in their "arm race" against the host; here, we provide insight into another facet of pathogenic embitterment by presenting evidence of the ability of enteric pathogens to exhibit pathogenicity through modulating metabolic homeostasis in Drosophila melanogaster. We report that Escherichia coli and Shigella sonnei orally infected flies exhibit lipid droplet deprivation from the fat body, irregular accumulation of lipid droplets in the midgut, and significant elevation of systemic glucose and triglyceride levels. Our findings indicate that these detected metabolic alterations in infected flies could be attributed to differential regulation of peptide hormones known to be crucial for lipid metabolism and insulin signaling. Gaining a proper understanding of infection-induced alterations succours in curbing the pathogenesis of enteric diseases and sets the stage for promising therapeutic approaches to quarry infection-induced metabolic disorders.


Assuntos
Drosophila melanogaster , Metabolismo dos Lipídeos , Animais , Drosophila melanogaster/fisiologia , Homeostase , Gotículas Lipídicas/metabolismo , Transdução de Sinais
9.
Eur J Pharmacol ; 919: 174701, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954233

RESUMO

Hyperglycemia exerts various harmful effects on the vasculature. Studies have shown an association between the levels of the adipokines leptin and adiponectin (APN) and vascular complications in diabetes mellitus. The aim of our study was to investigate the molecular mechanisms mediated by APN and leptin that are involved in hyperglycemia-induced vascular remodeling, especially at the level of oxidative stress and actin cytoskeleton dynamics. Rat aorta organ culture was used to investigate the effect of hyperglycemia on APN and leptin protein expression in vascular smooth muscle cells (VSMCs) using Western blot analysis and immunohistochemistry. Hyperglycemia lead to a significant increase in APN synthesis in VSMCs, mainly through caveolae, but this increase failed to provide vascular protection because of the decreased expression of APN receptors, especially AdipoR2, which was assessed by qPCR. In addition, hyperglycemia significantly upregulated leptin expression in VSMCs through caveolae and the RhoA/ROCK pathway. These variations lead to a marked increase in reactive oxygen species (ROS) production, detected by dihydroethidium (DHE) staining, and in NADPH oxidase type 4 (Nox4) expression. Moreover, Nox4 mediated the synthesis of APN in hyperglycemia in VSMCs. Finally, hyperglycemia activated the RhoA/ROCK pathway and subsequently induced the polymerization of globular actin (G-actin) into filamentous actin (F-actin), decreasing the G/F-actin ratio. Taken together, these data show that hyperglycemia increases oxidative stress and changes actin cytoskeleton dynamics in the aorta via caveolae, favoring vascular remodeling.


Assuntos
Cavéolas/metabolismo , Hiperglicemia/metabolismo , Músculo Liso Vascular/metabolismo , Adiponectina/metabolismo , Animais , Modelos Animais de Doenças , Leptina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Remodelação Vascular
10.
Vaccines (Basel) ; 9(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34960220

RESUMO

As of March 2020, the time when the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a pandemic, our existence has been threatened and the lives of millions have been claimed. With this ongoing global issue, vaccines are considered of paramount importance in curtailing the outbreak and probably a prime gamble to bring us back to 'ordinary life'. To date, more than 200 vaccine candidates have been produced, many of which were approved by the Food and Drug Administration (FDA) for emergency use, with the research and discovery phase of their production process passed over. Capering such a chief practice in COVID-19 vaccine development, and manufacturing vaccines at an unprecedented speed brought many challenges into play and raised COVID-19 vaccine remonstrance. In this review, we highlight relevant challenges to global COVID-19 vaccine development, dissemination, and deployment, particularly at the level of large-scale production and distribution. We also delineate public perception on COVID-19 vaccination and outline the main facets affecting people's willingness to get vaccinated.

11.
Vaccines (Basel) ; 9(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34696306

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic as of March 2020, creating a global crisis and claiming millions of lives. To halt the pandemic and alleviate its impact on society, economy, and public health, the development of vaccines and antiviral agents against SARS-CoV-2 was a dire need. To date, various platforms have been utilized for SARS-CoV-2 vaccine development, and over 200 vaccine candidates have been produced, many of which have obtained the United States Food and Drug Administration (FDA) approval for emergency use. Despite this successful development and licensure, concerns regarding the safety and efficacy of these vaccines have arisen, given the unprecedented speed of vaccine development and the newly emerging SARS-CoV-2 strains and variants. In this review, we summarize the different platforms used for Coronavirus Disease 2019 (COVID-19) vaccine development, discuss their strengths and limitations, and highlight the major safety concerns and potential risks associated with each vaccine type.

12.
Int J Infect Dis ; 105: 540-550, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33610778

RESUMO

By the beginning of 2020, infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had rapidly evolved into an emergent worldwide pandemic, an outbreak whose unprecedented consequences highlighted many existing flaws within public healthcare systems across the world. While coronavirus disease 2019 (COVID-19) is bestowed with a broad spectrum of clinical manifestations, involving the vital organs, the respiratory system transpires as the main route of entry for SARS-CoV-2, with the lungs being its primary target. Of those infected, up to 20% require hospitalization on account of severity, while the majority of patients are either asymptomatic or exhibit mild symptoms. Exacerbation in the disease severity and complications of COVID-19 infection have been associated with multiple comorbidities, including hypertension, diabetes mellitus, cardiovascular disorders, cancer, and chronic lung disease. Interestingly, a recent body of evidence indicated the pulmonary and gut microbiomes as potential modulators for altering the course of COVID-19, potentially via the microbiome-immune system axis. While the relative concordance between microbes and immunity has yet to be fully elucidated with regards to COVID-19, we present an overview of our current understanding of COVID-19-microbiome-immune cross talk and discuss the potential contributions of microbiome-related immunity to SARS-CoV-2 pathogenesis and COVID-19 disease progression.


Assuntos
COVID-19/etiologia , Microbiota , SARS-CoV-2/imunologia , COVID-19/imunologia , Comorbidade , Surtos de Doenças , Microbioma Gastrointestinal , Humanos , Sistema Respiratório/microbiologia
13.
J Inflamm Res ; 14: 5349-5365, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703273

RESUMO

Cardiac remodeling is the process by which the heart adapts to stressful stimuli, such as hypertension and ischemia/reperfusion; it ultimately leads to heart failure upon long-term exposure. Autophagy, a cellular catabolic process that was originally considered as a mechanism of cell death in response to detrimental stimuli, is thought to be one of the main mechanisms that controls cardiac remodeling and induces heart failure. Dysregulation of the adipokines leptin and adiponectin, which plays essential roles in lipid and glucose metabolism, and in the pathophysiology of the neuroendocrine and cardiovascular systems, has been shown to affect the autophagic response in the heart and to contribute to accelerate cardiac remodeling. The obesity-associated protein leptin is a pro-inflammatory, tumor-promoting adipocytokine whose elevated levels in obesity are associated with acute cardiovascular events, and obesity-related hypertension. Adiponectin exerts anti-inflammatory and anti-tumor effects, and its reduced levels in obesity correlate with the pathogenesis of obesity-associated cardiovascular diseases. Leptin- and adiponectin-induced changes in autophagic flux have been linked to cardiac remodeling and heart failure. In this review, we describe the different molecular mechanisms of hyperleptinemia- and hypoadiponectinemia-mediated pathogenesis of cardiac remodeling and the involvement of autophagy in this process. A better understanding of the roles of leptin, adiponectin, and autophagy in cardiac functions and remodeling, and the exact signal transduction pathways by which they contribute to cardiac diseases may well lead to discovery of new therapeutic agents for the treatment of cardiovascular remodeling.

14.
Cells ; 9(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147801

RESUMO

Over the past decade, the scientific committee has called for broadening our horizons in understanding host-microbe interactions and infectious disease progression. Owing to the fact that the human gut harbors trillions of microbes that exhibit various roles including the production of vitamins, absorption of nutrients, pathogen displacement, and development of the host immune system, particular attention has been given to the use of germ-free (GF) animal models in unraveling the effect of the gut microbiota on the physiology and pathophysiology of the host. In this review, we discuss common methods used to generate GF fruit fly, zebrafish, and mice model systems and highlight the use of these GF model organisms in addressing the role of gut-microbiota in gut-related disorders (metabolic diseases, inflammatory bowel disease, and cancer), and in activating host defense mechanisms and amending pathogenic virulence.


Assuntos
Modelos Animais de Doenças , Gastroenteropatias/microbiologia , Microbioma Gastrointestinal , Animais , Vida Livre de Germes , Interações Hospedeiro-Patógeno , Humanos
15.
Artigo em Inglês | MEDLINE | ID: mdl-32656090

RESUMO

Owing to the genetic similarities and conserved pathways between a fruit fly and mammals, the use of the Drosophila model as a platform to unveil novel mechanisms of infection and disease progression has been justified and widely instigated. Gaining proper insight into host-pathogen interactions and identifying chief factors involved in host defense and pathogen virulence in Drosophila serves as a foundation to establish novel strategies for infectious disease prevention and control in higher organisms, including humans.


Assuntos
Drosophila , Interações Hospedeiro-Patógeno , Animais , Drosophila melanogaster , Humanos , Virulência
16.
Biomedicines ; 8(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265898

RESUMO

Cardiovascular diseases are the leading causes of mortality worldwide. Among them, hypertension and its pathological complications pose a major risk for the development of other cardiovascular diseases, including heart failure and stroke. Identifying novel and early stage biomarkers of hypertension and other cardiovascular diseases is of paramount importance in predicting and preventing the major morbidity and mortality associated with these diseases. Biomarkers of such diseases or predisposition to their development are identified by changes in a specific indicator's expression between healthy individuals and patients. These include changes in protein and microRNA (miRNA) levels. Protein profiling using mass spectrometry and miRNA screening utilizing microarray and sequencing have facilitated the discovery of proteins and miRNA as biomarker candidates. In this review, we summarized some of the different, promising early stage protein and miRNA biomarker candidates as well as the currently used biomarkers for hypertension and other cardiovascular diseases. Although a number of promising markers have been identified, it is unlikely that a single biomarker will unambiguously aid in the classification of these diseases. A multi-marker panel-strategy appears useful and promising for classifying and refining risk stratification among patients with cardiovascular disease.

18.
Cell Metab ; 28(3): 449-462.e5, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29937377

RESUMO

Enteroendocrine cells (EEs) are interspersed between enterocytes and stem cells in the Drosophila intestinal epithelium. Like enterocytes, EEs express components of the immune deficiency (IMD) innate immune pathway, which activates transcription of genes encoding antimicrobial peptides. The discovery of large lipid droplets in intestines of IMD pathway mutants prompted us to investigate the role of the IMD pathway in the host metabolic response to its intestinal microbiota. Here we provide evidence that the short-chain fatty acid acetate is a microbial metabolic signal that activates signaling through the enteroendocrine IMD pathway in a PGRP-LC-dependent manner. This, in turn, increases transcription of the gene encoding the endocrine peptide Tachykinin (Tk), which is essential for timely larval development and optimal lipid metabolism and insulin signaling. Our findings suggest innate immune pathways not only provide the first line of defense against infection but also afford the intestinal microbiota control over host development and metabolism.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Células Enteroendócrinas/imunologia , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Imunidade Inata , Intestinos/microbiologia , Animais , Proteínas de Transporte/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/microbiologia , Células Enteroendócrinas/citologia , Células Enteroendócrinas/metabolismo , Insulina/metabolismo , Intestinos/citologia , Metabolismo dos Lipídeos , Precursores de Proteínas/metabolismo , Transdução de Sinais , Taquicininas/metabolismo
19.
Nat Microbiol ; 3(2): 243-252, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29180725

RESUMO

Vibrio cholerae colonizes the human terminal ileum to cause cholera, and the arthropod intestine and exoskeleton to persist in the aquatic environment. Attachment to these surfaces is regulated by the bacterial quorum-sensing signal transduction cascade, which allows bacteria to assess the density of microbial neighbours. Intestinal colonization with V. cholerae results in expenditure of host lipid stores in the model arthropod Drosophila melanogaster. Here we report that activation of quorum sensing in the Drosophila intestine retards this process by repressing V. cholerae succinate uptake. Increased host access to intestinal succinate mitigates infection-induced lipid wasting to extend survival of V. cholerae-infected flies. Therefore, quorum sensing promotes a more favourable interaction between V. cholerae and an arthropod host by reducing the nutritional burden of intestinal colonization.


Assuntos
Artrópodes/microbiologia , Intestinos/microbiologia , Percepção de Quorum/fisiologia , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade , Tecido Adiposo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster/microbiologia , Feminino , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/fisiologia , Lipólise , Tamanho do Órgão , Transdução de Sinais , Somatomedinas/genética , Ácido Succínico/metabolismo , Triglicerídeos/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA