Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Fluoresc ; 33(2): 423-435, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36435905

RESUMO

Fluorescent carbon quantum dots (CQDs) were prepared by an economical, green, and single-step procedure with the assistance of microwave heating of urea with bagasse (SCB), cellulose (C), or carboxymethyl cellulose (CMC). The prepared CQDs were characterized using a series of spectroscopic techniques, and they had petite size, intense absorption in the UV, and excitation wavelength-dependent fluorescence. The prepared CQDs were used for Pb(II) adsorption from an aqueous solution. The removal efficiency percentages (R %) were 99.16, 96.36, and 98.48% for QCMC, QC, and QSCB, respectively. The findings validated the efficiency of CQDs synthesized from CMC, cellulose, and SCB as excellent materials for further utilization in the environmental fields of wastewater pollution detection, adsorption, and chemical sensing applications. The kinetics and isotherms studied found that all CQDs isotherms fit well with the Langmuir model than Freundlich and Temkin models. According to R2, the pseudo-second-order fits the adsorption of QCMC, while the first-order one fits with QC and QSCB.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Pontos Quânticos/química , Água , Fluorescência , Celulose
2.
Luminescence ; 35(4): 478-485, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31854500

RESUMO

A facile approach for possible industrial production of long-persistent phosphorescence, continuing to emitting light for a long time period, smart cobbles were developed toward photoluminescent hard surfaces. The inorganic strontium aluminium oxide pigment doped with rare earth elements was added to a synthetic organic epoxy in the presence of polyamine as a hardener to make a phosphor-loaded viscous fluid that can then be hardened in a few minutes. The transparency of the solid cobbles can be accomplished easily using homogeneous dispersion of the phosphor in the epoxy resin fluid before the addition of a hardener to avoid pigment aggregation. This pigment-epoxy formula can be easily applied industrially onto flagstones surfaces under ambient conditions. The photoluminescent cobblestones demonstrated an optimum excitation wavelength at 366 nm and an emission band at 521 nm with a long-persistent phosphorescence cobble surface. The development of a translucent white colour under normal daylight, bright green under ultraviolet (UV) irradiation, bright white colour after 30 sec in the dark, and phosphorescent green colour after 75 min in the dark was indicated using Commission Internationale de l'Eclairage (CIE) Laboratory coloration measurements. The luminescent hard composite cobble exhibited a highly durable and reversible long-persistent phosphorescence light. Photoluminescence, morphological, and hardness properties as well as the elemental composition of the prepared cobbles were explored.


Assuntos
Óxido de Alumínio/química , Resinas Epóxi/química , Európio/química , Luminescência , Estrôncio/química , Medições Luminescentes , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
3.
J Fluoresc ; 29(3): 693-702, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31041695

RESUMO

A practical fluorescent test dipstick for an efficient recognition of ammonia and amines vapors was developed. The prepared testing strip was based on a composite of molecularly imprinted chitosan nanoparticles, supported on cellulose paper assay, with artificial fluorescent receptor sites for ammonia/amines recognition in aqueous and gaseous phases. A modified chitosan nanoparticles containing fluorescein molecules, were successfully prepared and employed on cellulose paper strip creating fluorescent cellulose (FL-Cell) to act as "turn-on" fluorescent sensor for sensing and determining ammonia and organic amine vapor. We employed chitosan nanoparticles that had fluorescein incorporated as the fluorescent probe molecule, with a readout limit achieved for aqueous ammonia as low as 280 ppm at room temperature and atmospheric pressure. The sensor responded linearly relying on the aqueous ammonia concentration in the range of 0.13-280 ppm. The chromogenic fluorescent cellulose platform response depended on the acid-base characteristic effects of the fluorescein probe. The protonated form of fluorescein molecules immobilized within the chitosan nanoparticles were in a nanoenvironment demonstrating only weak fluorescence. When binding to ammonia/amine vapor, the fluorescein active sites were deprotonated and exhibited higher "turned-on" fluorescence as a result of exposure to those alkaline species. The simple fabrication and abovementioned characteristics of such fluorescent chitosan nanoparticles are such that they should be applicable for monitoring of ammonia/amines in either aqueous or vapor states. We studied the distribution of the fluorescent chitosan onto paper sheets fabricated from bleached bagasse pulp and coated with two different thicknesses of a fluorescent nanochitosan and blank nanochitosan solutions. A thin fluorescent nanochitosan layer was created on the surface of cellulose strips using an applicator. Its distribution was assessed by scanning electron microscopic (SEM) and transmission electron microscopic (TEM) analysis as well as Fourier-transform infrared spectroscopic (FT-IR) measurements. The mechanical properties were also tested. The exploitation of this "turn-on" fluorescence sensor invented platform should be amenable to different situations where determination of ammonia/amine vapor or aqueous solution is required.

4.
RSC Adv ; 14(35): 25785-25792, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39156751

RESUMO

Background: Employing citric acid/dimethyl formamide (CA/DMF), two distinct types of carbon quantum dots (CQDs), tree-shaped/fingerprinted (TF-CQDs) and fullerene-like (F) were synthesized from both cellulose and carboxymethyl cellulose (CMC). Methods: Fluorescence microscopy revealed different emission colors: blue for TF-CQDs and green for F, highlighting the structural influence on light properties. Transmission electron microscopy (TEM) confirmed the intricate fingerprinted and tree-like morphology of TF-CQDs and the spherical nature of F derived from CMC. The adsorption behavior and kinetics of Cr(vi) removal from water by TF-CQDs and F were evaluated. Significant findings: Both samples demonstrated rapid Cr(vi) uptake; TF-CQDs reached equilibrium within 120 minutes compared to 240 minutes for F. Subsequent leaching led to decreased adsorption after these initial periods. Kinetic analysis revealed a first-order model for TF-CQDs, implying physical adsorption dominance. Conversely, F exhibited a better fit to pseudo-first and second-order models, suggesting combined chemical and physical mechanisms.

5.
Int J Biol Macromol ; 269(Pt 2): 132027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702001

RESUMO

In this study, novel Cu-complexes of heterocyclic cellulose which were synthesized via the reaction of carboxymethyl cellulose (CMC) from bagasse pulp with NH2NH2 to give hydrazide cellulose which easily reacted with CS2 to form salt and then cyclized in the presence of HCl to afford cellulose oxadiazole, or with hydrazine hydrate to give cellulose triazole. Furthermore, the cellulose oxadiazole and triazole moieties acting as chelating agents with metal ion Cu (II), and all synthesized compounds were examined for their spectral analysis to show the adsorption of Cu (II) on the surface of cellulose through intramolecular hydrogen bonding. Results illustrated that cellulose oxadiazole and Cu- cellulose oxadiazole exhibited antimicrobial activities more than triazole and Cu- cellulose triazole. Furthermore, anticancer results showed that both cellulose oxadiazole and triazole exhibited activity higher than Cu-cellulose oxadiazole and Cu-cellulose triazole, where the cellulose triazole showed the highest activity (IC50 = 58.7 µg/µL). Additionally, the docking simulation of the synthesized cellulose complexes with different proteins such as PDBID:3t88, PDBID:4ynt, PDBID:1tgh, PDBID:2wje, and PDBID:4hdq and shortage bond length to confirm the experimental results. Optimization of metal complexes utilized the DFT/B3LYP/LANL2DZ basis set to confirm the stability of these metals theoretically and their physical descriptors and FMO analysis.


Assuntos
Anti-Infecciosos , Antineoplásicos , Celulose , Cobre , Simulação de Acoplamento Molecular , Celulose/química , Cobre/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Testes de Sensibilidade Microbiana , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Linhagem Celular Tumoral
6.
Int J Biol Macromol ; 257(Pt 1): 128589, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052288

RESUMO

Graphene oxide (GO), TiO2-NPs, HPMC, and shellac are environmentally green polymers and nanocomposites. This work aimed to create biodegradable composite films made of HPMC/shellac, HPMC/shellac-GO, and HPMC/shellac-GO/TiO2-NPs by film casting. TiO2-HPMC/shellac-GO matrix's dispersibility and mixing ability were characterized and observed using FTIR and XRD. XRD analysis shows that the crystallinity decreased within the composites due to breaking H-bonding. Compared to HPMC/shellac, TGA/DTG demonstrated the composite films' superior thermal stability. TiO2 (0.08-0.16 %) was cast into a composite film comprising HPMC, shellac, and GO. The homogeneity of TiO2 distribution in the composite film was shown using a SEM, which was also used to display the morphology of nanocomposite films. Nanocomposite films' thickness, air permeability, tensile strength, Young's modulus, and burst strength were examined. The results demonstrated that natural films prepared by a combination of shellac/GO with HPMC enhanced the fabricating of films' properties, the tensile strength increased by 231 % (from 16 to 53 MPa) in HPMC and HPSG2 (HPMC 1.9 g/shellac 0.25 g/GO 0.125 g in 100 mL) respectively, whereas the contact angle did not change. And after addition of TiO2-NPs, there were high enhancements in HPMC films' properties, such tensile strength increased by 212 % (from 16 to 50 MPa), burst strength increased by 20.96 % (3.1 to 3.75 Kg/cm2), and the contact angle by 60.86 % (48 to 74°) in HPMC and HPSGT2 respectively. Compared to HPMC films, films exhibited the highest levels of antibacterial activity against E. coli, B. mycoides, and C. albicans. So, the composite films from HPMC/shellac/GO/TiO2-NPs are promising potential packaging materials.


Assuntos
Escherichia coli , Grafite , Embalagem de Produtos , Resinas Vegetais , Derivados da Hipromelose , Resistência à Tração
7.
J Phys Chem B ; 128(14): 3485-3498, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38549268

RESUMO

We report the ionothermal carbonization (ITC) of lignocellulosic biomass in imidazolium tetrachloroferrate ionic liquids (ILs) as an advantageous approach for the preparation of nanostructured carbonaceous materials, namely, ionochars. In a previous study, we investigated the role of the imidazolium cation and demonstrated the possibility of controlling both the textural and morphological properties of ionochars by cation engineering. Although essential for providing intermediate Lewis acidity and relatively high thermal stability, the role of the chloroferrate anion is still open to debate. Herein, we investigated the ITC of sugarcane bagasse and its main component, cellulose, in 1-alkyl-3-methylimidazolium ILs with different chloroferrate anions. We identified anionic speciation and its impact on the properties of the IL by Raman spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The obtained ionochars were characterized by gas physisorption, electron microscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and 13C solid-state CP-MAS NMR spectroscopy. We show that the anionic species have a predominant impact on the textural and morphological properties of the ionochars.

8.
Int J Biol Macromol ; 261(Pt 2): 129801, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309410

RESUMO

This work aims to enhance the performance of the polyvinyl alcohol (PVA) composite by using cellulose nanocrystal (CNC) as reinforcement and copper nanoparticles (CuNPs)/reduced graphene oxide (rGO) as conducting and antimicrobial reagents. Firstly, rGO was loaded onto CuNPs using an eco-friendly microwave method. Different techniques characterized the components and prepared composites, which indicated the incorporation of cellulose nanocrystals and rGO@CuNPs within the polyvinyl alcohol matrix. Utilizing the clear zone of inhibition, the antibacterial test was quantified. Compared to the neat composite, the rGO@CuNPs loaded polyvinyl alcohol/ cellulose nanocrystal composites exhibited no bacterial growth against S. aureus, E. coli, and C. albicans. However, all composites did not have antifungal activity against A. niger. The combination of conductivity and interfacial polarization is the reason for the abrupt increase of permittivity with decreasing frequency. Besides, adding rGO@CuNPs improved the electrical conductivity. DC-Conductivity increased about a decade after adding cellulose nanocrystal to polyvinyl alcohol, then another decade after adding CuONPs. The electric loss modulus representation shows a systematic shift in the peak position towards higher frequencies, decreasing the so-called conductivity relaxation time. This is the main reason for the enhancement of conductivity. The systematic attenuation of peaks' height with increasing conductivity is still unclear.


Assuntos
Grafite , Nanocompostos , Nanopartículas , Álcool de Polivinil/química , Celulose/química , Escherichia coli , Staphylococcus aureus , Nanocompostos/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química
9.
Int J Biol Macromol ; 278(Pt 1): 134643, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39128733

RESUMO

Chronic wounds (CWs) treatment still represents a demanding medical challenge. Several intrinsic physiological signals (i.e., pH) help to stimulate and support wound healing. CWs, in fact, are characterized by a predominantly alkaline pH of the exudate, which acidifies as the wound heals. Therefore, pH-responsive wound dressings hold great potential owing to their capability of tuning their functions according to the wound conditions. Herein, porous chitosan (CS)-based scaffolds loaded with cellulose nanocrystals (CNCs) and graphene oxide (GO) were successfully fabricated using a freeze-drying method. CNCs were extracted from bagasse pulps fibers through acid hydrolysis. GO was synthesised by Hummer's method. The scaffolds were then ionically cross-linked using the amino acid L-Arginine (Arg), as a bioactive agent, and tested as potential pH-responsive wound dressing. Notably, the effect of CNCs and GO singly and simultaneously loaded within the CS-Arg scaffolds was investigated. The modulation of CNCs and GO content within CS-Arg scaffolds facilitated the development of scaffolds with an optimal pH-dependent swelling ratio capability and extended degradation time. Furthermore, CS/CNC/GO-Arg scaffolds exhibited tuned biological features, in terms of antimicrobial activity, cellular proliferation/migration ability, and the expression of extracellular matrix specific markers (i.e., elastin and collagen I) related to wound healing in human dermal fibroblasts.

10.
Sci Rep ; 13(1): 11306, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438440

RESUMO

The chromium adsorption behavior from aqueous solution by the amphoteric Janus nitrogen-doped carbon quantum dots (AJ-N-CQDs) was investigated. The pseudo-first-order and the second-order adsorption kinetics models were employed to analyze the experimental data; the second-order adsorption kinetics model presented a better correlation to the experimental data, suggesting a chemisorptions process. The values obtained in the pseudo-first-order are still suitable for describing the Kinetics of Cr(VI) sorption. These values elucidate the surface processes involving chemisorption and physisorption in the adsorption of Cr(VI) by AJ-N-CQDs. The R2 of the Boyd model gave a better fit to the adsorption data of AJ-N-CQDs (i.e., external diffusion), which means the surface processes involving external Cr(VI) adsorption by AJ-N-CQDs. The higher value of α may be due to the greater surface area of the AJ-N-CQDs for the immediate adsorption of Cr(VI) from the aqueous solution. AJ-N-CQDs have fluorescence spectra before and after Cr(VI) adsorption, indicating they are promising for chemical sensor applications.

11.
Biotechnol J ; 18(10): e2300093, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37291073

RESUMO

In this study, novel crosslinked hydrogels based on chitosan (CS) and carrageenan (CRG) loaded with silver and/or copper nanoparticles (Ag/CuNPs) were prepared through a freeze-drying (thawing) process to be applied in biological applications comprising wound dressing. These hydrogels showed porous interconnected structures. The influence of the used nanoparticles (NPs) on the antibacterial properties of the CS/CRG hydrogels was explored. Antimicrobial results revealed that both CS/CRG/CuNPs, CS/CRG/AgNPs, and CS/CRG/Ag-CuNPs exhibited promising antibacterial and antifungal activity against Escherichia coli, Pseudomonas aeruginosa, Streptococcus mutans, Staphylococcus aureus, Bacillus subtilis, and Candida albicans. Moreover, CS/CRG/AgNPs, CS/CRG/CuNPs, and CS/CRG/Ag-CuNPs hydrogels showed potential antioxidant activity to be 57%, 78%, and 89%, respectively. Furthermore, cytotoxicity results against Vero normal cell line confirmed that all designed hydrogels are safe upon usage. The bimetallic CS/CRG hydrogels showed notably enhanced antibacterial properties among the as-prepared hydrogels allowing them to be a successful material upon being employed in wound dressing applications.


Assuntos
Quitosana , Nanopartículas Metálicas , Quitosana/farmacologia , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/química , Carragenina/farmacologia , Carragenina/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Escherichia coli
12.
Int J Biol Macromol ; 239: 124302, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011750

RESUMO

The diagnosis and treatment of many neurological and psychiatric problems depend on establishing simple, inexpensive, and comfortable electrochemical sensors for dopamine (DA) detection. Herein, 2,2,6,6 tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOC) were successfully loaded with silver nanoparticles (AgNPs) and/or graphite (Gr) and crosslinked by tannic acid, producing composites. This study describes a suitable casting procedure for the composite synthesis of TOC/AgNPs and/or Gr for the electrochemical detection of dopamine. Electrochemical impedance spectra (EIS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to characterize the TOC/AgNPs/Gr composites. In addition, the direct electrochemistry of electrodes treated with the prepared composites was examined using cyclic voltammetry. The TOC/AgNPs/Gr composite-modified electrode improved electrochemical performance towards detecting dopamine compared to TOC/Gr-modified electrodes. Upon employing amperometric measurement, our electrochemical instrument has a wide linear range (0.005-250 µM), a low limit of detection (0.0005 µM) at S/N = 3, and a high sensitivity (0.963 µA µM-1 cm-2). Additionally, it was demonstrated that DA detection seemed to have outstanding anti-interference characteristics. The proposed electrochemical sensors meet the clinical criteria regarding reproducibility, selectivity, stability, and recovery. The straightforward electrochemical method utilized in this paper may provide a potential framework for creating dopamine quantification biosensors.


Assuntos
Celulose Oxidada , Grafite , Nanopartículas Metálicas , Dopamina , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Limite de Detecção , Prata/química , Grafite/química , Técnicas Eletroquímicas/métodos , Eletrodos
13.
Int J Biol Macromol ; 248: 125872, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482158

RESUMO

Nowadays, the combined knowledge and experience in biomedical research and material sciences results in the innovation of smart materials that could efficiently overcome the problems of microbial contaminations. Herein, a new drug delivery platform prepared by grafting sodium alginate with ß-carboxyethyl acrylate and acrylamide was described and characterized. 9-Aminoacridine (9-AA), and kanamycin sulfate (KS) were separately loaded into the hydrogel in situ during graft polymerization. The grafting efficiency for the resulting hydrogels was 70.01-78.08 %. The chemical structure of the hydrogels, thermogravimetric analysis, and morphological features were investigated. The swelling study revealed that the hydrogel without drugs achieved a superior swelling rate compared to drug-loaded hydrogels. The hydrogel tuned the drug-release rate in a pH-dependent manner. Furthermore, the antibacterial study suggested that the hydrogels encapsulating 9-AA (88.6 %) or KS (89.3 %) exhibited comparable antibacterial activity against Gram-positive and Gram-negative bacterial strains. Finally, the cytocompatibility study conducted on normal lung cell line (Vero cells) demonstrated neglectable to tolerable toxicity for the drug-loaded hydrogel. More interestingly, the cell viability for the blank hydrogel was 92.5 %, implying its suitability for biomedical applications.


Assuntos
Alginatos , Hidrogéis , Animais , Chlorocebus aethiops , Hidrogéis/farmacologia , Hidrogéis/química , Células Vero , Antibacterianos/farmacologia , Antibacterianos/química , Sistemas de Liberação de Medicamentos , Canamicina
14.
Materials (Basel) ; 16(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37895704

RESUMO

A combination of different eco-friendly materials prepared promising fluorescent quantum dots (QDs) through the one-step process using the microwave heating of urea with cellulose, chitosan, and biochar. Characterizations of the prepared QDs, including the investigation of their structure by infrared spectroscopy, Raman analysis, X-ray diffraction, thermal gravimetric analysis, morphology, and optical properties, were performed. The results showed that QDs possess a small size, high UV absorption, and excitation wavelength-dependent fluorescence. The prepared QDs were also tested for metal ions removal from aqueous solutions. The adsorption at different contact times was investigated to optimize the adsorption efficiency of the prepared QDs. All QDs were found to be an ideal sorbent for Cr(II), Cu(II), Mn(II), and Pb(II). From the data, Cr(II) was more highly adsorbed than other metal ions. The results of the kinetic investigation showed that the pseudo-second-order kinetic model fit the adsorption process effectively. In addition, the fluorescence spectra of QDs were changed after the adsorption of metal ions; hence, the prepared QDs could be utilized in environmental sectors such as wastewater pollution detection, adsorption, and chemical sensing applications.

15.
Int J Biol Macromol ; 232: 123443, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36709806

RESUMO

In this study, the dielectric behavior of polyanionic electrically conductive superabsorbent hydrogel based on sodium alginate-g-poly(AM-co-ECA-co-AMPS) was investigated by broadband dielectric spectroscopy (BDS). The dielectric spectra obtained from -70 to 70 °C showed a superposition of three distinctive processes, electrode polarization, charge carrier's transport, and a molecular relaxation process. These dynamic processes were further analyzed along with the effect of both temperature and reduced graphene oxide (rGO) content. The development of a clear electrochemical double layer (ECDL) at the electrode/hydrogel interface strongly supports its possible application in supercapacitors' forms of energy storage. TGA, DSC, rheology, and electrochemical properties were studied. Furthermore, when the composite hydrogel with rGO content of 2.5 % was assembled into a symmetric supercapacitor, it displayed a specific capacitance of 756 F.g-1 at 1 A.g-1 and 704 F.g-1 after 5000 cycles with high capacitance retention of 93.2 %. The superior conductivity and porous structure of the rGO composite hydrogel are credited with the hydrogel's excellent electrochemical capabilities.


Assuntos
Espectroscopia Dielétrica , Hidrogéis , Eletricidade , Alginatos , Poli A
16.
Carbohydr Polym ; 305: 120571, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737211

RESUMO

Wastewater rich in heavy metals and organic compounds represents one of the essential environmental pollutants. Therefore, a practical approach is to fabricate eco-friendly polymer-based systems with a high ability to absorb pollutants. Herein, bionanocomposites consisting of chitosan (Cs) grafted by various monomers, such as acrylamide (Am), acrylic acid (AA), and 4-styrene sulfonic acid (SSA), and hybrid nanoparticles of graphene oxide/titanium dioxide nanoparticles (GO@TiO2-NPs) were fabricated. The prepared nanomaterials and bionanocomposites characterized via various tools. The data illustrated that the prepared GO had a thickness of 10 nm and TiO2-NPs had a diameter of 25 nm. In addition, the grafted chitosan (gCs) using Am and SSA had the largest surface area (gCs2; 22.89 nm) and its bionanocomposite (NC5; 104.79 nm). In addition, the sorption ability of the 0.15 g of prepared bionanocomposites to the (100 mg/L) of lead ions (Pb2+) and (25 mg/L) of basic-red 46 (BR46) under various conditions has been studied. The results showed that gCs3 and NC5 had the highest adsorption of Pb2+ (79.54 %) and BR46 (79.98 %), respectively. The kinetic study results of the sorbents obeyed the Pseudo second-order model. In contrast, the isothermal study followed the Freundlich adsorption model for Pb2+ and the Langmuir adsorption model for BR46.

17.
Gels ; 9(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38131912

RESUMO

Exceptionally fast temperature-responsive, mechanically strong, tough and extensible monolithic non-porous hydrogels were synthesized. They are based on divinyl-crosslinked poly(N-isopropyl-acrylamide) (PNIPAm) intercalated by hydroxypropyl methylcellulose (HPMC). HPMC was largely extracted after polymerization, thus yielding a 'template-modified' PNIPAm network intercalated with a modest residue of HPMC. High contents of divinyl crosslinker and of HPMC caused a varying degree of micro-phase-separation in some products, but without detriment to mechanical or tensile properties. After extraction of non-fixed HPMC, the micro-phase-separated products combine superior mechanical properties with ultra-fast T-response (in 30 s). Their PNIPAm network was highly regular and extensible (intercalation effect), toughened by hydrogen bonds to HPMC, and interpenetrated by a network of nano-channels (left behind by extracted HPMC), which ensured the water transport rates needed for ultra-fast deswelling. Moreover, the T-response rate could be widely tuned by the degree of heterogeneity during synthesis. The fastest-responsive among our hydrogels could be of practical interest as soft actuators with very good mechanical properties (soft robotics), while the slower ones offer applications in drug delivery systems (as tested on the example of Theophylline), or in related biomedical engineering applications.

18.
Pharmaceutics ; 15(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36839660

RESUMO

Graphene oxide (GO) and its reduced form (rGO) have recently attracted a fascinating interest due to their physico-chemical properties, which have opened up new and interesting opportunities in a wide range of biomedical applications, such as wound healing. It is worth noting that GO and rGO may offer a convenient access to its ready dispersion within various polymeric matrices (such as cellulose and its derivative forms), owing to their large surface area, based on a carbon skeleton with many functional groups (i.e., hydroxyl, carboxyl, epoxy bridge, and carbonyl moieties). This results in new synergic properties due to the presence of both components (GO or rGO and polymers), acting at different length-scales. Furthermore, they have shown efficient antimicrobial and angiogenic properties, mostly related to the intracellular formation of reactive oxygen species (ROS), which are advantageous in wound care management. For this reason, GO or rGO integration in cellulose-based matrixes have allowed for designing highly advanced multifunctional hybrid nanocomposites with tailored properties. The current review aims to discuss a potential relationship between structural and physico-chemical properties (i.e., size, edge density, surface chemistry, hydrophilicity) of the nanocomposites with antimicrobials and angiogenic mechanisms that synergically influence the wound healing phenomenon, by paying particular attention to recent findings of GO or rGO/cellulose nanocomposites. Accordingly, after providing a general overview of cellulose and its derivatives, the production methods used for GO and rGO synthesis, the mechanisms that guide antimicrobial and angiogenic processes of tissue repair, as well as the most recent and remarkable outcomes on GO/cellulose scaffolds in wound healing applications, will be presented.

19.
Pharmaceutics ; 15(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111755

RESUMO

Biopolymers have significant pharmaceutical applications, and their blending has favorable characteristics for their pharmaceutical properties compared to the sole components. In this work, sodium alginate (SA) as a marine biopolymer was blended with poly(vinyl) alcohol (PVA) to form SA/PVA scaffolds through the freeze-thawing technique. Additionally, polyphenolic compounds in Moringa oleifera leaves were extracted by different solvents, and it was found that extracts with 80% methanol had the highest antioxidant activity. Different concentrations (0.0-2.5%) of this extract were successfully immobilized in SA/PVA scaffolds during preparation. The characterization of the scaffolds was carried out via FT-IR, XRD, TG, and SEM. The pure and Moringa oleifera extract immobilized SA/PVA scaffolds (MOE/SA/PVA) showed high biocompatibility with human fibroblasts. Further, they showed excellent in vitro and in vivo wound healing capacity, with the best effect noted for the scaffold with high extract content (2.5%).

20.
BMC Chem ; 17(1): 117, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730653

RESUMO

A novel adsorbent was prepared using a backbone comprising chemically hybridized dialdehyde cellulose (DAC) with chitosan via Schiff base reaction, followed by graft copolymerization of acrylic acid. Fourier transform infrared spectroscopy (FTIR) confirmed the hybridization while scanning electron microscopy (SEM) revealed intensive covering of chitosan onto the surface of DAC. At the same time, energy dispersive X-ray (EDX) proved the emergence of nitrogen derived from chitosan. The X-ray diffraction (XRD) indicated that the crystallinity of the backbone and graft copolymer structures was neither affected post the hybridization nor the grafting polymerization. The adsorbent showed high swelling capacity (872%) and highly efficient removal and selectivity of Ni2+ in the presence of other disturbing ions such as Pb2+ or Cu2+. The kinetic study found that the second-order kinetic model could better describe the adsorption process of (Cu2+, Ni2+) on the graft copolymer. In contrast, the first-order kinetic model prevails for the binary mixture (Pb2+, Ni2+). Moreover, the correlation coefficient values for the adsorption process of these binary elements using Langmuir and Freundlich isotherms confirmed that the developed grafted DAC/chitosan exhibits a good fit with both isotherm models, which indicates its broadened and complicated structure. Furthermore, the grafted DAC/chitosan exhibited high efficient regeneration and high adsorption capacity for Pb2+, Cu2+ and Ni2+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA