Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(51): E11904-E11913, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30455313

RESUMO

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by preferential motor neuron death. Approximately 15% of ALS cases are familial, and mutations in the fused in sarcoma (FUS) gene contribute to a subset of familial ALS cases. FUS is a multifunctional protein participating in many RNA metabolism pathways. ALS-linked mutations cause a liquid-liquid phase separation of FUS protein in vitro, inducing the formation of cytoplasmic granules and inclusions. However, it remains elusive what other proteins are sequestered into the inclusions and how such a process leads to neuronal dysfunction and degeneration. In this study, we developed a protocol to isolate the dynamic mutant FUS-positive cytoplasmic granules. Proteomic identification of the protein composition and subsequent pathway analysis led us to hypothesize that mutant FUS can interfere with protein translation. We demonstrated that the ALS mutations in FUS indeed suppressed protein translation in N2a cells expressing mutant FUS and fibroblast cells derived from FUS ALS cases. In addition, the nonsense-mediated decay (NMD) pathway, which is closely related to protein translation, was altered by mutant FUS. Specifically, NMD-promoting factors UPF1 and UPF3b increased, whereas a negative NMD regulator, UPF3a, decreased, leading to the disruption of NMD autoregulation and the hyperactivation of NMD. Alterations in NMD factors and elevated activity were also observed in the fibroblast cells of FUS ALS cases. We conclude that mutant FUS suppresses protein biosynthesis and disrupts NMD regulation, both of which likely contribute to motor neuron death.


Assuntos
Esclerose Lateral Amiotrófica/genética , Mutação , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteína FUS de Ligação a RNA/farmacologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , Fibroblastos , Genes Reguladores , Homeostase , Humanos , Corpos de Inclusão/metabolismo , Camundongos , Neurônios Motores/metabolismo , Neuroblastoma , Proteômica , Proteína FUS de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo
2.
Biochim Biophys Acta ; 1862(10): 2004-14, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27460707

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease. Mutations in the Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS) gene cause a subset of familial ALS cases and are also implicated in sporadic ALS. FUS is typically localized to the nucleus. The ALS-related FUS mutations cause cytoplasmic mis-localization and the formation of stress granule-like structures. Abnormal cytoplasmic FUS localization was also found in a subset of frontotemporal dementia (FTLD) cases without FUS mutations. To better understand the function of FUS, we performed wild-type and mutant FUS pull-downs followed by proteomic identification of the interacting proteins. The FUS interacting partners we identified are involved in multiple pathways, including chromosomal organization, transcription, RNA splicing, RNA transport, localized translation, and stress response. FUS interacted with hnRNPA1 and Matrin-3, RNA binding proteins whose mutations were also reported to cause familial ALS, suggesting that hnRNPA1 and Matrin-3 may play common pathogenic roles with FUS. The FUS interactions displayed varied RNA dependence. Numerous FUS interacting partners that we identified are components of exosomes. We found that FUS itself was present in exosomes, suggesting that the secretion of FUS might contribute to the cell-to-cell spreading of FUS pathology. FUS interacting proteins were sequestered into the cytoplasmic mutant FUS inclusions that could lead to their mis-regulation or loss of function, contributing to ALS pathogenesis. Our results provide insights into the physiological functions of FUS as well as important pathways where mutant FUS can interfere with cellular processes and potentially contribute to the pathogenesis of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Exossomos/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteômica , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Linhagem Celular Tumoral , Exossomos/patologia , Células HEK293 , Humanos , Camundongos
3.
Hum Mol Genet ; 24(18): 5174-83, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26123490

RESUMO

Mutations in Fused in sarcoma (FUS) gene cause a subset of familial amyotrophic lateral sclerosis (ALS), a fatal motor neuron degenerative disease. Wild-type FUS is largely localized in the nucleus, but mutant FUS accumulates in the cytoplasm and forms inclusions. It is unclear whether FUS depletion from the nucleus or FUS inclusions in the cytoplasm triggers motor neuron degeneration. In this study, we revealed that the nuclear and cytoplasmic FUS proteins form distinct local distribution patterns. The nuclear FUS forms oligomers and appears granular under confocal microscope. In contrast, the cytoplasmic FUS forms inclusions with no oligomers detected. These patterns are determined by the subcellular localization of FUS, regardless of wild-type or mutant protein. Moreover, mutant FUS remained or re-directed in the nucleus can oligomerize and behave similarly to the wild-type FUS protein. We further found that nuclear RNAs are critical to its oligomerization. Interestingly, the formation of cytoplasmic FUS inclusions is also dependent on RNA binding. Since the ALS mutations disrupt the nuclear localization sequence, mutant FUS is likely retained in the cytoplasm after translation and interacts with cytoplasmic RNAs. We therefore propose that local RNA molecules interacting with the FUS protein in different subcellular compartments play a fundamental role in determining FUS protein architecture and function.


Assuntos
Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cromatina/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Espaço Intracelular/metabolismo , Modelos Biológicos , Mutação , Multimerização Proteica , Transporte Proteico , Transporte de RNA , Proteína FUS de Ligação a RNA/genética , Iniciação da Transcrição Genética
4.
Neurol Genet ; 3(4): e172, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28812062

RESUMO

OBJECTIVE: To describe the clinical features of a novel fused in sarcoma (FUS) mutation in a young adult female amyotrophic lateral sclerosis (ALS) patient with rapid progression of weakness and to experimentally validate the consequences of the P525R mutation in cellular neuronal models. METHODS: We conducted sequencing of genomic DNA from the index patient and her family members. Immunocytochemistry was performed in various cellular models to determine whether the newly identified P525R mutant FUS protein accumulated in cytoplasmic inclusions. Clinical features of the index patient were compared with 19 other patients with ALS carrying the P525L mutation in the same amino acid position. RESULTS: A novel mutation c.1574C>G (p.525P>R) in the FUS gene was identified in the index patient. The clinical symptoms are similar to those in familial ALS patients with the P525L mutation at the same position. The P525R mutant FUS protein showed cytoplasmic localization and formed large stress granule-like cytoplasmic inclusions in multiple cellular models. CONCLUSIONS: The clinical features of the patient and the cytoplasmic inclusions of the P525R mutant FUS protein strengthen the notion that mutations at position 525 of the FUS protein result in a coherent phenotype characterized by juvenile or young adult onset, rapid progression, variable positive family history, and female preponderance.

5.
Am J Clin Exp Urol ; 2(1): 15-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25374905

RESUMO

Prostate cancer is a disease that affects hundreds of thousands of men in the United States each year. In the early stages of advanced prostate cancer, the disease can be suppressed by androgen deprivation therapy (ADT). Eventually, however, most patients experience resistance to androgen deprivation, and their treatment transitions to alternative targeting of the androgen axis with abiraterone and enzalutamide, as well as taxane-based chemotherapy. Development of advanced castration-resistant prostate cancer (CRPC) is a consequence of lack of an apoptotic response by the tumor cells to treatment. Understanding the mechanisms contributing to prostate tumor therapeutic resistance and progression to metastasis requires dissection of the signaling mechanisms navigating tumor invasion and metastasis as mediated by cell-matrix interactions engaging components of the extracellular matrix (ECM), to form adhesion complexes. For a tumor call to metastasize from the primary tumor, it requires disruption of cell-cell interactions from the surrounding cells, as well as detachment from the ECM and resistance to anoikis (apoptosis upon cell detachment from ECM). Attachment, movement and invasion of cancer cells are functionally facilitated by the actin cytoskeleton and tubulin as the structural component of microtubules. Transforming growth factor (TGF)-ß has tumor-inhibitory activity in the early stages of tumorigenesis, but it promotes tumor invasive characteristics in metastatic disease. Recent evidence implicates active (dephosphorylated) cofilin, an F-actin severing protein required for cytoskeleton reorganization, as an important contributor to switching TGF-ß characteristics from a growth suppressor to a promoter of prostate cancer invasion and metastasis. Cancer cells eventually lose the ability to adhere to adjacent neighboring cells as well as ECM proteins, and via epithelial-mesenchymal transition (EMT), acquire invasive and metastatic characteristics. Microtubule-targeting chemotherapeutic agents, taxanes, are used in combination with antiandrogen strategies to increase the survival rate in patients with CRPC. This review addresses the development of therapeutic platform for targeting the integrity of actin cytoskeleton to impair prostate cancer progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA