Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biotechnol Prog ; 12(6): 855-64, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8983210

RESUMO

As part of an effort to develop a suspension-culture perfusion-based process with high flow rate without the fouling and antibody retention inherent to filter-based cell-separation devices, we have evaluated and contributed to the development of the Centritech Lab centrifuge for the perfusion culture of hybridoma cells in protein-free medium. Culture start-ups showed that cell growth and monoclonal-antibody (MAb) production rates were similar in both a spinner flask and continuous centrifugation coupled to a bioreactor. The centrifuge efficiently separated viable cells from dead ones. Viable-cell recoveries were never below 98%, whereas dead-cell recoveries were usually around 80%. The cell content of the centrifuge supernatant and concentrate was strongly determined by the total amount of cells, viable and dead, in the culture broth, but an influence of the centrifugation parameters (feed rate, times of separation and discharge, and rotor speed) was observed. This understanding of the separation process inside the centrifuge is important and may apply to other similar devices. Monoclonal antibodies were not retained in the bioreactor during centrifugation perfusion. However, whereas similar growth rates were obtained in perfusion cultures using either continuous centrifugation or filtration, MAb concentrations were 35% lower in the former case. Utilization of the centrifuge in an intermittent fashion decreased the daily cell residence time outside the bioreactor, the daily pelleted-cell residence time in the centrifuge, and the frequency of cell passage to the centrifuge. This led to higher viable-cell numbers in the bioreactor and an accompanying increase in MAb concentrations, 225-250 mg of IgM L-1, equal to the performance of filter-based perfusion systems with the same cell line. It was hypothesized that having cells periodically packed at the bottom of the centrifuge insert (up to 800 x 10(6) cells mL-1) is deleterious to the culture by exposing the pelleted cells to prolonged nutrient limitations.


Assuntos
Centrifugação/instrumentação , Meios de Cultura , Hibridomas/citologia , Proteínas , Animais , Anticorpos Monoclonais/biossíntese , Linhagem Celular , Separação Celular/métodos , Sobrevivência Celular , Hibridomas/imunologia , Camundongos , Perfusão
2.
Biotechnol Prog ; 16(5): 803-8, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11027174

RESUMO

On-line monitoring of insect cell cultures used for the production of recombinant proteins with the baculovirus expression vector system (BEVS) provides valuable tools for the optimization, operation, and control of the production process. The relative permittivity (epsilon') and CO(2) evolution rates (CER) were measured on-line using the biomass monitor and the infrared CO(2) analyzer, respectively. The growth and infection phases of two different cell lines, Spodoptera frugiperda (Sf-9) and Trichoplusia ni(High-5), were monitored using the above measurements. These in turn were correlated to the progress of the culture by using the off-line measurements of protein produced, virus titer, and biovolume, which is the product of viable cell density and mean cell volume. The epsilon', CER, and the biovolume profiles were closely matched during the growth phase of cells when grown in a batch or fed batch culture. The relationship became more complex when the cultures were either in stationary phase or in the postinfection phase. The epsilon' profile was found to be a good indicator of the process of synchronous baculoviral infection, showing a plateau between 18 and 24 h postinfection (hpi), the period during which budded virus is produced, and a peak at approximately 48 hpi correlated to the onset of accelerated cell lysis. The CER profile continues to increase after the growth period with a peak around the 24 hpi period, after which there is a decline in the profile corresponding to release of virus as seen from virus titer determinations. This was examined for Sf-9 cultures under conditions of cell densities from 3 to 50 x 10(6) cells/mL and MOI values ranging from 0.001 to 1000. The profiles were found to be similar also in the case of the High-5 cells. Thus both measurements give reliable information regarding the physiological status of the cells as seen from their correlation to virus and protein production. A further combination of these with the off-line measured parameters such as the biovolume and metabolite concentrations can give a more detailed understanding of the process and help in the better design and automation of these processes.


Assuntos
Divisão Celular , Mariposas/citologia , Animais , Baculoviridae/genética , Reatores Biológicos , Linhagem Celular , Mariposas/virologia
4.
Biotechnol Bioeng ; 43(9): 881-91, 1994 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18615881

RESUMO

A perfusion system based on a 4-L stirred tank bioreactor and a custom-designed tangential (cross-flow) filter was assembled to realize a scaleup of the Baculovirus Expression Vector System (BEVS). When perfused with 1 to 1.5 vol/day, Spodoptera frugiperda (Sf-9) insect cell cultures grew from 4 x 10(6) to 15 x 10(6) cells/mL over 3 to 4 days. The possibility of maintaining high specific production of recombinant VP6 protein (from bovine rotavirus) after baculovirus infection of the high-density cultures was then assessed. The process consisted of a growth phase in TNMFH + 10% FBS, followed by infection with Bac-BRV6L recombinant baculovirus and a shift to a low-serum (0 to 1%) medium for perfusion during the production phase. Multiple runs were executed, each including a battery of shaker flask controls at various cell densities and serum concentrations. On average, specific rVP6 production in the bioreactor amounted to 76% of that found in 20-mL shaker cultures simulatingthe bioreactor's high cell density, low serum concentration, and medium renewal rate. Mechanical stress generated by cell/medium separation in theperfusion process reduced cell growth rate but had minimal effect on rVP6production. Our results also indicated that serum concentration during the infection phase affected the rVP6 specific production in a cell density-dependent fashion. Although the feasibility of the cell density scale up was demonstrated, optimization is still needed to achieve a truly cost-effective process.

5.
Biotechnol Bioeng ; 50(1): 36-48, 1996 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-18626897

RESUMO

Respiration rates in Spodoptera frugiperda (Sf-9) cell bioreactor cultures were successfully measured on-line using two methods: The O(2) uptake rate (OUR) was determined using gas phase pO(2) values imposed by a dissolved oxygen controller and the CO(2) evolution rate (CER) was measured using an infrared detector. The measurement methods were accurate, reliable, and relatively inexpensive. The CER was routinely determined in bioreactor cultures used for the production of several recombinant proteins. Simple linear relationships between viable cell densities and both OUR and CER in exponentially growing cultures were used to predict viable cell density. Respiration measurements were also used to follow the progress of baculoviral infections in Sf-9 cultures. Infection led to increases in volumetric and per-cell respiration rates. The relationships between respiration and several other culture parameters, including viable cell density, cell protein, cell volume, glucose consumption, lactate production, viral titer, and recombinant beta-galactosidase accumulation, were examined. The extent of the increase in CER following infection and the time postinfection at which maximum CER was attained were negatively correlated with the multiplicity of infection (MOI) at multiplicities below the level required to infect all the cells in a culture. Delays in the respiration peak related to the MOI employed were correlated with delays in the peak in recombinant protein accumulation. DO levels in the range 5-100% did not exert any major effects on viable cell densities, CER, or product titer in cultures infected with a baculovirus expressing recombinant beta-galactosidase.

6.
Biotechnol Bioeng ; 67(4): 435-50, 2000 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-10620759

RESUMO

One of the key parameters in perfusion culture is the rate of medium replacement (D). Intensifying D results in enhanced provision of nutrients, which can lead to an increase in the viable cell density (X(v)). The daily MAb production of hybridoma cells can thus be increased proportionally without modifying the bioreactor scale, provided that both viable cell yield per perfusion rate (Y(Xv/D)) and specific MAb productivity (q(MAb)) remain constant at higher D. To identify factors prone to limit productivity in perfusion, a detailed kinetic analysis was carried out on a series of cultures operated within a D range of 0.48/4.34 vvd (volumes of medium/reactor volume/day) in two different suspension-based systems. In the Celligen/vortex-flow filter system, significant reductions in Y(Xv/D) and q(MAb) resulting from the use of gas sparging were observed at D > 1.57 vvd (X(v) > 15 x 10(6) cells/mL). Through glucose supplementation, we have shown that the decrease in Y(Xv/D) encountered in presence of sparging was not resulting from increased cellular destruction or reduced cell growth, but rather from glucose limitation. Thus, increases in hydrodynamic shear stress imparted to the culture via intensification of gas sparging resulted in a gradual increase in specific glucose consumption (q(glc)) and lactate production rates (q(lac)), while no variations were observed in glutamine-consumption rates. As a result, while glutamine was the sole limiting-nutrient under non-sparging conditions, both glutamine and glucose became limiting under sparging conditions. Although a reduction in q(MAb) was observed at high-sparging rates, inhibition of MAb synthesis did not result from direct impact of bubbles, but was rather associated with elevated lactate levels (25-30 mM), resulting from shear stress-induced increases in q(lac), q(glc), and Y(lac/glc). Deleterious effects of sparging on Y(Xv/D) and q(MAb) encountered in the Celligen/vortex-flow filter system were eliminated in the sparging-free low-shear environment of the Chemap-HRI/ultrasonic filter system, allowing for the maintenance of up to 37 x 10(6) viable cells/mL. A strategy aimed at reducing requirements for sparging in large-scale perfusion cultures by way of a reduction in the oxygen demand using cellular engineering is discussed.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Animais , Reatores Biológicos , Meios de Cultura/metabolismo , Filtração/instrumentação , Filtração/métodos , Gases/metabolismo , Hibridomas/citologia , Hibridomas/metabolismo , Cinética , Camundongos
7.
Biotechnol Bioeng ; 68(4): 381-8, 2000 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-10745206

RESUMO

Significant improvement in cell growth and protein production has been achieved in Sf-9 insect cell cultures using pulse additions of multicomponent nutrient feed concentrates (Bédard et al., 1994; Chan et al., 1998). The present work focuses on investigating an alternative feeding strategy wherein the nutrients are fed in a semi continuous manner. Fed batch culture experiments were carried out to compare the two different feeding strategies, pulse and semi continuous and a process developed to achieve a cell density of 5.2 x 10(7) cells/mL of Sf-9 cells in a 3.5 L bioreactor. Production of recombinant protein beta-galactosidase was carried out by infecting the cells with baculovirus at a MOI of 10 at cell densities of 17 x 10(6)cells/mL. Specific productivity could be maintained at cell densities as high as 14 x 10(6) cells/mL. The results presented indicate that the feeding method can provide significant improvements in the performance with a reduction in the amount of total nutrients added. On-line monitoring of the culture using the capacitance probe showed that the capacitance probe can be used successfully to monitor the biomass and infection process even at higher cell densities.


Assuntos
Técnicas de Cultura de Células/métodos , beta-Galactosidase/biossíntese , Animais , Contagem de Células , Divisão Celular , Meios de Cultura , Spodoptera
8.
Biotechnol Bioeng ; 63(1): 122-6, 1999 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-10099588

RESUMO

The use of on-line relative permittivity (epsilon') measurements for monitoring cultures of Sf-9 cells was evaluated in a batch culture and a batch infected with a baculovirus expressing beta-galactosidase. It was found that viable cell density and volume essentially accounted for all the variation in epsilon' in both non-infected and synchronously infected cultures, indicating that the epsilon' of a cell suspension was sensitive only to changes in the viable cell population. Additionally the parameter provided clearly defined signposts of the progress of the infection.


Assuntos
Técnicas de Cultura de Células/métodos , beta-Galactosidase/biossíntese , Animais , Baculoviridae , Divisão Celular , Sobrevivência Celular , Cinética , Modelos Biológicos , Sistemas On-Line , Proteínas Recombinantes/biossíntese , Spodoptera , Fatores de Tempo , Transfecção , beta-Galactosidase/genética
9.
Biotechnol Bioeng ; 55(3): 497-504, 1997 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18636515

RESUMO

A flow injection analysis (FIA) biosensor system has been developed for on-line determination of glucose during mammalian cell cultivation. The culture sample was peristaltically withdrawn from the bioreactor and after cell separation by a steam sterilizable ceramic microfilter, the filtrate was continuously fed to the FIA mediated-biosensor system at 4 mLh(-1), whereas the cell-containing retentate was recirculated to the bioreactor. In the amperometric biosensor system, glucose oxidase was covalently immobilized onto a preactivated nylon membrane and attached to the sensing area of a platinum working electrode. The enzyme reaction was coupled with the mediator 1,1'-dimethylferricinium (DMFe(+))-cyclodextrin inclusion complex to recycle the reduced glucose oxidase to its original active state. 1,1'-Dimethylferrocene (DMFe) was then reoxidized to DMFe(+) at the surface of the platinum electrode poised at + 0.15 V vs silver/silver chloride. The FIA mediated-biosensor was linear up to 6 mM glucose, with a detection limit of 0.1 mM, and possessed excellent reproducibility (+/- 0.4 %, 95 % confidence interval) over 123 repeated analyses during a 62 h continuous operation. The immobilized glucose oxidase was stable for up to 7 days when applied to glucose measurement during 5-10 day fed-batch cultivation of 293S mammalian cells. The results obtained from the mediated-biosensor system compared well with the hexokinase and HPLC data.

10.
Protein Expr Purif ; 23(1): 66-74, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11570847

RESUMO

Using the baculovirus/insect-cell expression vector system, we succeeded in obtaining a high yield of active human beta(2)-adrenergic receptor/G(alphas) fusion protein. This was achieved following high cell density production under nutrient-limiting conditions using a very low multiplicity of infection (MOI). This approach was found to significantly reduce inactive protein accumulation that occurred when production was done using conventional high MOI procedures. The maximum specific and volumetric yields of active receptor using this strategy increased by factors of two- and sixfold, respectively. Our results suggest that the increase in the ratio of active/total protein produced results from production under nutrient limitation. Since low multiplicity of infection offers many advantages for large-scale applications, we suggest that this simple production method should be considered when optimizing expression of G-protein-coupled receptors and other complex proteins.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/biossíntese , Receptores Adrenérgicos beta 2/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Animais , Baculoviridae/genética , Baculoviridae/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Linhagem Celular , Meios de Cultura , Proteínas Heterotriméricas de Ligação ao GTP/genética , Humanos , Imunoensaio , Insetos , Ligação Proteica , Subunidades Proteicas , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Transdução Genética
11.
Biotechnol Bioeng ; 38(6): 619-28, 1991 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18604880

RESUMO

An 11-L helical ribbon impeller (HRI) bioreactor was tested for the culture of Spodoptera frugiperda (Sf-9) cells. This impeller and surface baffling ensured homogeneous mixing and high oxygen transfer through surface aeration and surface-induced babble generation. Serum-supplemented and serum-free cultures, using TNMFH and IPL/41 media, respectively, grew a similar specific growth rates(0.031 and 0.028 h(-1)) to maximum cell densities of 5.5 x 10(6)-6.0 x 10(6) cells. mL(-1) with viability exceeding 98% during exponential growth phase. Growth limitation coincided with glucose and glutamine depletion and production of significant amounts of alanine. The bioreactor was further tested under more stringent conditions by infecting a serum-free medium culture with a recombinant baculovirus. Heterologous protein production of approximately 35 microg per 10(6) cells was comparable to yields obtained in serum-free cultures grown in spinner flasks and petri dishes. Average specific oxygen up-take and carbon dioxide production rates of the serum-free culture prior to infection as measured by on-line mass spectroscopy were 0.20 micromol O(2).(10(6) cells)(-1) h(-1) and 0.22 micromol CO(2) . (10(6) cells)(-1)h(-1) and increased by 30-40% during infection. Therefore, the mixing and oxygenation conditions of this bioreactor were suitable for insect cell culture and recombinant protein production, with limitation being mainly attributed to nutrient depletion and toxic by-product generation.

12.
Appl Microbiol Biotechnol ; 44(1-2): 53-8, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8579836

RESUMO

The extracellular domain of the epidermal growth factor receptor (EGFR) was expressed using the baculovirus expression vector system. The maximum level of the EGFR extracellular domain secreted into the medium in Sf-9 (Spodoptera frugiperda or fall army-worm) cell batch culture was approximately 2.5 micrograms ml-1. In order to increase this yield, a process was developed that included the following sequence of steps: batch growth to maximum cell density, infection of the cells with recombinant virus, and replacement of spent medium. By using this process, the specific yield of recombinant protein, which in batch culture drops when infection is carried out at densities greater than 3 x 10(6) cells ml-1, can be maintained at a maximum in cultures infected at densities of 10(7) cells ml-1 or greater. The process, when applied to 3-1 and 11-1 bioreactor cultures, allowed a maximum volumetric yield of triple the maximum value attainable in batch culture. Spent-medium analysis indicates that medium replacement provides certain nutrients that could otherwise be limiting for recombinant protein production.


Assuntos
Baculoviridae/genética , Receptores ErbB/biossíntese , Proteínas Recombinantes/biossíntese , Aminoácidos/metabolismo , Animais , Baculoviridae/metabolismo , Meios de Cultura , Glucose/metabolismo , Spodoptera
13.
J Struct Biol ; 123(3): 260-4, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9878580

RESUMO

Calnexin is a molecular chaperone that facilitates folding of glycoproteins in the endoplasmic reticulum (ER). The cloned lumenal domain of canine calnexin, cnxDeltaTMC, retains its biological activity without the transmembrane and cytosolic region. For the purpose of structure determination we generated a crystallizable core by mild proteolysis and identified its termini by N-terminal sequencing and molecular mass determination. A truncated gene was cloned accordingly. Its product, cnxDeltaN25C15, was purified to apparent homogeneity and crystallized. This truncated variant remains biologically active as shown by its binding to monoglucosylated oligosaccharides and functional interaction with ERp57. A heavy atom derivative was identified.


Assuntos
Proteínas de Ligação ao Cálcio/química , Endopeptidases/metabolismo , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Animais , Calnexina , Clonagem Molecular , Cristalização , Cães , Endopeptidase K/metabolismo , Glicoproteínas/metabolismo , Proteínas de Choque Térmico/metabolismo , Isomerases/metabolismo , Chaperonas Moleculares/química , Dados de Sequência Molecular , Oligossacarídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Análise de Sequência , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA