Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(19): 4939-4952.e15, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34508652

RESUMO

The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.


Assuntos
COVID-19/epidemiologia , Epidemias , SARS-CoV-2/fisiologia , COVID-19/transmissão , Bases de Dados como Assunto , Surtos de Doenças , Humanos , Louisiana/epidemiologia , Filogenia , Fatores de Risco , SARS-CoV-2/classificação , Texas , Viagem , Estados Unidos/epidemiologia
2.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168672

RESUMO

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Assuntos
Pesquisa Biomédica , Contenção de Riscos Biológicos , Virologia , Humanos , COVID-19 , Estados Unidos , Vírus , Pesquisa Biomédica/normas
3.
J Virol ; 97(10): e0056323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754763

RESUMO

IMPORTANCE: Human cytomegalovirus (HCMV) requires inactivation of AKT to efficiently replicate, yet how AKT is shut off during HCMV infection has remained unclear. We show that UL38, an HCMV protein that activates mTORC1, is necessary and sufficient to destabilize insulin receptor substrate 1 (IRS1), a model insulin receptor substrate (IRS) protein. Degradation of IRS proteins in settings of excessive mTORC1 activity is an important mechanism for insulin resistance. When IRS proteins are destabilized, PI3K cannot be recruited to growth factor receptor complexes, and hence, AKT membrane recruitment, a rate limiting step in its activation, fails to occur. Despite its penchant for remodeling host cell signaling pathways, our results reveal that HCMV relies upon a cell-intrinsic negative regulatory feedback loop to inactivate AKT. Given that pharmacological inhibition of PI3K/AKT potently induces HCMV reactivation from latency, our findings also imply that the expression of UL38 activity must be tightly regulated within latently infected cells to avoid spontaneous reactivation.


Assuntos
Citomegalovirus , Proteínas Substratos do Receptor de Insulina , Proteínas Proto-Oncogênicas c-akt , Humanos , Citomegalovirus/fisiologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estabilidade Proteica , Proteólise , Resistência à Insulina , Retroalimentação Fisiológica , Ativação Viral , Latência Viral
4.
Proc Natl Acad Sci U S A ; 117(31): 18764-18770, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32694203

RESUMO

Human progenitor cells (HPCs) support human cytomegalovirus (HCMV) latency, and their differentiation along the myeloid lineage triggers cellular cues that drive reactivation. A key step during HCMV reactivation in latently infected HPCs is reexpression of viral major immediate early (MIE) genes. We recently determined that the major immediate early promoter (MIEP), which is primarily responsible for MIE gene expression during lytic replication, remains silent during reactivation. Instead, alternative promoters in the MIE locus are induced by reactivation stimuli. Here, we find that forkhead family (FOXO) transcription factors are critical for activation of alternative MIE promoters during HCMV reactivation, as mutating FOXO binding sites in alternative MIE promoters decreased HCMV IE gene expression upon reactivation and significantly decreased the production of infectious virus from latently infected primary CD34+ HPCs. These findings establish a mechanistic link by which infected cells sense environmental cues to regulate latency and reactivation, and emphasize the role of contextual activation of alternative MIE promoters as the primary drivers of reactivation.


Assuntos
Citomegalovirus , Fatores de Transcrição Forkhead/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Virais/metabolismo , Citomegalovirus/genética , Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/virologia , Genes Precoces/genética , Células HeLa , Humanos , Latência Viral
5.
J Virol ; 95(15): e0220720, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34011552

RESUMO

Heterodimers of glycoproteins H (gH) and L (gL) comprise a basal element of the viral membrane fusion machinery conserved across herpesviruses. In human cytomegalovirus (HCMV), the glycoprotein UL116 assembles onto gH at a position similar to that occupied by gL, forming a heterodimer that is incorporated into virions. Here, we show that UL116 promotes the expression of gH/gL complexes and is required for the efficient production of infectious cell-free virions. UL116-null mutants show a 10-fold defect in production of infectious cell-free virions from infected fibroblasts and epithelial cells. This defect is accompanied by reduced expression of two disulfide-linked gH/gL complexes that play crucial roles in viral entry: the heterotrimer of gH/gL with glycoprotein O (gO) and the pentameric complex of gH/gL with UL128, UL130, and UL131. Kifunensine, a mannosidase inhibitor that interferes with endoplasmic reticulum (ER)-associated degradation (ERAD) of terminally misfolded glycoproteins, restored levels of gH, gL, and gO in UL116-null-infected cells, indicating that constituents of HCMV gH complexes are unstable in the absence of UL116. Further, we find that gH/UL116 complexes are abundant in virions, since a major gH species not covalently linked to other glycoproteins, which has long been observed in the literature, is detected from wild-type but not UL116-null virions. Interestingly, UL116 coimmunoprecipitates with UL148, a viral ER-resident glycoprotein that attenuates ERAD of gO, and we observe elevated levels of UL116 in UL148-null virions. Collectively, our findings argue that UL116 is a chaperone for gH that supports the assembly, maturation, and incorporation of gH/gL complexes into virions. IMPORTANCE HCMV is a betaherpesvirus that causes dangerous opportunistic infections in immunocompromised patients as well as in the immune-naive fetus and preterm infants. The potential of the virus to enter new host cells is governed in large part by two alternative viral glycoprotein H (gH)/glycoprotein L (gL) complexes that play important roles in entry: gH/gL/gO and gH/gL/UL128-131. A recently identified virion gH complex, comprised of gH bound to UL116, adds a new layer of complexity to the mechanisms that contribute to HCMV infectivity. Here, we show that UL116 promotes the expression of gH/gL complexes and that UL116 interacts with the viral ER-resident glycoprotein UL148, a factor that supports the expression of gH/gL/gO. Overall, our results suggest that UL116 is a chaperone for gH. These findings have important implications for understanding HCMV cell tropism as well as for the development of vaccines against the virus.


Assuntos
Citomegalovirus/crescimento & desenvolvimento , Glicoproteínas de Membrana/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Alcaloides/farmacologia , Linhagem Celular , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Estresse do Retículo Endoplasmático/fisiologia , Inibidores Enzimáticos/farmacologia , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Humanos , Proteínas Virais de Fusão/genética , Internalização do Vírus
6.
7.
Proc Natl Acad Sci U S A ; 116(35): 17492-17497, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31409717

RESUMO

Reactivation from latency requires reinitiation of viral gene expression and culminates in the production of infectious progeny. The major immediate early promoter (MIEP) of human cytomegalovirus (HCMV) drives the expression of crucial lytic cycle transactivators but is silenced during latency in hematopoietic progenitor cells (HPCs). Because the MIEP has poor activity in HPCs, it is unclear how viral transactivators are expressed during reactivation. It has been presumed that viral gene expression is reinitiated via de-repression of the MIEP. We demonstrate that immediate early transcripts arising from reactivation originate predominantly from alternative promoters within the canonical major immediate early locus. Disruption of these intronic promoters results in striking defects in re-expression of viral genes and viral genome replication in the THP-1 latency model. Furthermore, we show that these promoters are necessary for efficient reactivation in primary CD34+ HPCs. Our findings shift the paradigm for HCMV reactivation by demonstrating that promoter switching governs reactivation from viral latency in a context-specific manner.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Regiões Promotoras Genéticas , Ativação Viral , Latência Viral , Células Cultivadas , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Íntrons , Transativadores/genética , Transativadores/metabolismo , Replicação Viral
8.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801856

RESUMO

The human cytomegalovirus (HCMV) endoplasmic reticulum (ER)-resident glycoprotein UL148 is posited to play roles in immune evasion and regulation of viral cell tropism. UL148 prevents cell surface presentation of the immune cell costimulatory ligand CD58 while promoting maturation and virion incorporation of glycoprotein O, a receptor binding subunit for an envelope glycoprotein complex involved in entry. Meanwhile, UL148 activates the unfolded protein response (UPR) and causes large-scale reorganization of the ER. In order to determine whether the seemingly disparate effects of UL148 are related or discrete, we generated six charged cluster-to-alanine (CCTA) mutants within the UL148 ectodomain and compared them to wild-type UL148, both in the context of infection studies using recombinant viruses and in ectopic expression experiments, assaying for effects on ER remodeling and CD58 surface presentation. Two mutants, targeting charged clusters spanning residues 79 to 83 (CC3) and 133 to 136 (CC4), retained the potential to impede CD58 surface presentation. Of the six mutants, only CC3 retained the capacity to reorganize the ER, but it showed a partial phenotype. Wild-type UL148 accumulates in a detergent-insoluble form during infection. However, all six CCTA mutants were fully soluble, which implies a relationship between insolubility and organelle remodeling. Additionally, we found that the chimpanzee cytomegalovirus UL148 homolog suppresses surface presentation of CD58 but fails to reorganize the ER, while the homolog from rhesus cytomegalovirus shows neither activity. Collectively, our findings illustrate various degrees of functional divergence between homologous primate cytomegalovirus immunevasins and suggest that the capacity to cause ER reorganization is unique to HCMV UL148.IMPORTANCE In myriad examples, viral gene products cause striking effects on cells, such as activation of stress responses. It can be challenging to decipher how such effects contribute to the biological roles of the proteins. The HCMV glycoprotein UL148 retains CD58 within the ER, thereby preventing it from reaching the cell surface, where it functions to stimulate cell-mediated antiviral responses. Intriguingly, UL148 also triggers the formation of large, ER-derived membranous structures and activates the UPR, a set of signaling pathways involved in adaptation to ER stress. We demonstrate that the potential of UL148 to reorganize the ER and to retain CD58 are separable by mutagenesis and, possibly, by evolution, since chimpanzee cytomegalovirus UL148 retains CD58 but does not remodel the ER. Our findings imply that ER reorganization contributes to other roles of UL148, such as modulation of alternative viral glycoprotein complexes that govern the virus' ability to infect different cell types.


Assuntos
Antígenos CD58/metabolismo , Citomegalovirus/fisiologia , Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Proteínas Virais de Fusão/metabolismo , Sequência de Aminoácidos , Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Retículo Endoplasmático/imunologia , Estresse do Retículo Endoplasmático , Humanos , Evasão da Resposta Imune , Resposta a Proteínas não Dobradas , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/genética , Tropismo Viral
10.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29743375

RESUMO

The tropism of human cytomegalovirus (HCMV) is influenced by the envelope glycoprotein complexes gH/gL/gO and gH/gL/UL128-131. During virion assembly, gO and the UL128-131 proteins compete for binding to gH/gL in the endoplasmic reticulum (ER). This assembly process clearly differs among strains, since Merlin (ME) virions contain abundant gH/gL/UL128-131 and little gH/gL/gO, whereas TR contains much higher levels of total gH/gL, mostly in the form of gH/gL/gO, but much lower levels of gH/gL/UL128-131 than ME. Remaining questions include (i) what are the mechanisms behind these assembly differences, and (ii) do differences reflect in vitro culture adaptations or natural genetic variations? Since the UL74(gO) open reading frame (ORF) differs in 25% of amino acids between TR and ME, we analyzed recombinant viruses in which the UL74(gO) ORF was swapped. TR virions were >40-fold more infectious than ME. Transcriptional repression of UL128-131 enhanced the infectivity of ME to the level of TR, despite still far lower levels of gH/gL/gO. Swapping the UL74(gO) ORF had no effect on either TR or ME. A quantitative immunoprecipitation approach revealed that gH/gL expression levels were within 4-fold between TR and ME, but the gO expression level was 20-fold lower for ME, which suggested differences in mRNA transcription, translation, or rapid ER-associated degradation of gO. trans-Complementation of gO expression during ME replication gave a 6-fold enhancement of infectivity beyond the 40-fold effect of UL128-131 repression alone. Overall, strain variations in the assembly of gH/gL complexes result from differences in the expression of gO and UL128-131, and selective advantages for reduced UL128-131 expression during fibroblast propagation are much stronger than those for higher gO expression.IMPORTANCE Specific genetic differences between independently isolated HCMV strains may result from purifying selection on de novo mutations arising during propagation in culture or random sampling among the diversity of genotypes present in clinical specimens. Results presented indicate that while reduced UL128-131 expression may confer a powerful selective advantage during cell-free propagation of HCMV in fibroblast cultures, selective pressures for increased gO expression are much weaker. Thus, variation in gO expression among independent strains may represent natural genotype variability present in vivo This may have important implications for virus-host interactions, such as immune recognition, and underscores the value of studying molecular mechanisms of replication using multiple HCMV strains.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus , Regulação da Expressão Gênica/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas do Envelope Viral/imunologia , Tropismo Viral/fisiologia , Vírion/imunologia , Montagem de Vírus/fisiologia , Linhagem Celular , Citomegalovirus/patogenicidade , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Regulação da Expressão Gênica/genética , Humanos , Glicoproteínas de Membrana/genética , Especificidade da Espécie , Proteínas do Envelope Viral/genética , Vírion/genética
11.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29997207

RESUMO

UL148 is a viral endoplasmic reticulum (ER)-resident glycoprotein that contributes to human cytomegalovirus (HCMV) cell tropism. The influence of UL148 on tropism correlates with its potential to promote the expression of glycoprotein O (gO), a viral envelope glycoprotein that participates in a heterotrimeric complex with glycoproteins H and L that is required for infectivity. In an effort to gain insight into the mechanism, we used mass spectrometry to identify proteins that coimmunoprecipitate from infected cells with UL148. This approach led us to identify an interaction between UL148 and SEL1L, a factor that plays key roles in ER-associated degradation (ERAD). In pulse-chase experiments, gO was less stable in cells infected with UL148-null mutant HCMV than during wild-type infection, suggesting a potential functional relevance for the interaction with SEL1L. To investigate whether UL148 regulates gO abundance by influencing ERAD, small interfering RNA (siRNA) silencing of either SEL1L or its partner, Hrd1, was carried out in the context of infection. Knockdown of these ERAD factors strongly enhanced levels of gO but not other viral glycoproteins, and the effect was amplified in the presence of UL148. Furthermore, pharmacological inhibition of ERAD showed similar results. Silencing of SEL1L during infection also stabilized an interaction of gO with the ER lectin OS-9, which likewise suggests that gO is an ERAD substrate. Taken together, our results identify an intriguing interaction of UL148 with the ERAD machinery and demonstrate that gO behaves as a constitutive ERAD substrate during infection. These findings have implications for understanding the regulation of HCMV cell tropism.IMPORTANCE Viral glycoproteins in large part determine the cell types that an enveloped virus can infect and hence play crucial roles in transmission and pathogenesis. The glycoprotein H/L heterodimer (gH/gL) is part of the conserved membrane fusion machinery that all herpesviruses use to enter cells. In human cytomegalovirus (HCMV), gH/gL participates in alternative complexes in virions, one of which is a trimer of gH/gL with glycoprotein O (gO). Here, we show that gO is constitutively degraded during infection by the endoplasmic reticulum-associated degradation (ERAD) pathway and that UL148, a viral factor that regulates HCMV cell tropism, interacts with the ERAD machinery and slows gO decay. Since gO is required for cell-free virus to enter new host cells but dispensable for cell-associated spread that resists antibody neutralization, our findings imply that the posttranslational instability of a viral glycoprotein provides a basis for viral mechanisms to modulate tropism and spread.


Assuntos
Citomegalovirus/genética , Retículo Endoplasmático/virologia , Glicoproteínas de Membrana/genética , Proteínas/genética , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/genética , Tropismo Viral/genética , Células Cultivadas , Citomegalovirus/patogenicidade , Citomegalovirus/fisiologia , Retículo Endoplasmático/fisiologia , Células Epiteliais/virologia , Fibroblastos/virologia , Regulação da Expressão Gênica , Humanos , Mutação com Perda de Função , Espectrometria de Massas , Glicoproteínas de Membrana/metabolismo , RNA Interferente Pequeno , Ubiquitina-Proteína Ligases/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Tropismo Viral/fisiologia , Internalização do Vírus
12.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30045994

RESUMO

Eukaryotic cells are equipped with three sensors that respond to the accumulation of misfolded proteins within the lumen of the endoplasmic reticulum (ER) by activating the unfolded protein response (UPR), which functions to resolve proteotoxic stresses involving the secretory pathway. Here, we identify UL148, a viral ER-resident glycoprotein from human cytomegalovirus (HCMV), as an inducer of the UPR. Metabolic labeling results indicate that global mRNA translation is decreased when UL148 expression is induced in uninfected cells. Further, we find that ectopic expression of UL148 is sufficient to activate at least two UPR sensors: the inositol-requiring enzyme-1 (IRE1), as indicated by splicing of Xbp-1 mRNA, and the protein kinase R (PKR)-like ER kinase (PERK), as indicated by phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α) and accumulation of activating transcription factor 4 (ATF4). During wild-type HCMV infection, increases in Xbp-1 splicing, eIF2α phosphorylation, and accumulation of ATF4 accompany UL148 expression. UL148-null infections, however, show reduced levels of these UPR indicators and decreases in XBP1s abundance and in phosphorylation of PERK and IRE1. Small interfering RNA (siRNA) depletion of PERK dampened the extent of eIF2α phosphorylation and ATF4 induction observed during wild-type infection, implicating PERK as opposed to other eIF2α kinases. A virus with UL148 disrupted showed significant 2- to 4-fold decreases during infection in the levels of transcripts canonically regulated by PERK/ATF4 and by the ATF6 pathway. Taken together, our results argue that UL148 is sufficient to activate the UPR when expressed ectopically and that UL148 is an important cause of UPR activation in the context of the HCMV-infected cell.IMPORTANCE The unfolded protein response (UPR) is an ancient cellular response to ER stress that is of broad importance to viruses. Certain consequences of the UPR, including mRNA degradation and translational shutoff, would presumably be disadvantageous to viruses, while other attributes of the UPR, such as ER expansion and upregulation of protein folding chaperones, might enhance viral replication. Although HCMV is estimated to express well over 150 different viral proteins, we show that the HCMV ER-resident glycoprotein UL148 contributes substantially to the UPR during infection and, moreover, is sufficient to activate the UPR in noninfected cells. Experimental activation of the UPR in mammalian cells is difficult to achieve without the use of toxins. Therefore, UL148 may provide a new tool to investigate fundamental aspects of the UPR. Furthermore, our findings may have implications for understanding the mechanisms underlying the effects of UL148 on HCMV cell tropism and evasion of cell-mediated immunity.


Assuntos
Citomegalovirus/fisiologia , Retículo Endoplasmático/metabolismo , Interações Hospedeiro-Patógeno , Resposta a Proteínas não Dobradas , Proteínas Virais de Fusão/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Células Cultivadas , Endorribonucleases/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Perfilação da Expressão Gênica , Humanos , Fosforilação , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , eIF-2 Quinase/metabolismo
13.
Proc Natl Acad Sci U S A ; 112(14): 4471-6, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831500

RESUMO

Viral glycoproteins mediate entry of enveloped viruses into cells and thus play crucial roles in infection. In herpesviruses, a complex of two viral glycoproteins, gH and gL (gH/gL), regulates membrane fusion events and influences virion cell tropism. Human cytomegalovirus (HCMV) gH/gL can be incorporated into two different protein complexes: a glycoprotein O (gO)-containing complex known as gH/gL/gO, and a complex containing UL128, UL130, and UL131 known as gH/gL/UL128-131. Variability in the relative abundance of the complexes in the virion envelope correlates with differences in cell tropism exhibited between strains of HCMV. Nonetheless, the mechanisms underlying such variability have remained unclear. We have identified a viral protein encoded by the UL148 ORF (UL148) that influences the ratio of gH/gL/gO to gH/gL/UL128-131 and the cell tropism of HCMV virions. A mutant disrupted for UL148 showed defects in gH/gL/gO maturation and enhanced infectivity for epithelial cells. Accordingly, reintroduction of UL148 into an HCMV strain that lacked the gene resulted in decreased levels of gH/gL/UL128-131 on virions and, correspondingly, decreased infectivity for epithelial cells. UL148 localized to the endoplasmic reticulum, but not to the cytoplasmic sites of virion envelopment. Coimmunoprecipitation results indicated that gH, gL, UL130, and UL131 associate with UL148, but that gO and UL128 do not. Taken together, the findings suggest that UL148 modulates HCMV tropism by regulating the composition of alternative gH/gL complexes.


Assuntos
Citomegalovirus/metabolismo , Glicoproteínas/metabolismo , Proteínas Virais de Fusão/metabolismo , Tropismo Viral , Núcleo Celular/metabolismo , Cromossomos Artificiais Bacterianos , Citomegalovirus/fisiologia , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Glicosídeo Hidrolases/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Microscopia Confocal , Mutação , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/genética , Vírion/metabolismo
14.
J Virol ; 90(2): 626-9, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26559829

RESUMO

The viral glycoproteins that decorate enveloped viruses play crucial roles in cell entry and in large part dictate the spectrum of cell types that a virus can infect. The identification in human cytomegalovirus (HCMV) of a viral endoplasmic reticulum (ER)-resident glycoprotein that regulates the composition of alternative viral envelope glycoprotein complexes raises the intriguing possibility that certain viruses might actively regulate the tropism of progeny virions to improve their fitness or to navigate through the host.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Proteínas Virais/metabolismo , Tropismo Viral , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Humanos , Proteínas Virais de Fusão/metabolismo
15.
J Virol ; 89(1): 523-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25339763

RESUMO

UNLABELLED: Herpesvirus nucleocapsids exit the host cell nucleus in an unusual process known as nuclear egress. The human cytomegalovirus (HCMV) UL97 protein kinase is required for efficient nuclear egress, which can be explained by its phosphorylation of the nuclear lamina component lamin A/C, which disrupts the nuclear lamina. We found that a dominant negative lamin A/C mutant complemented the replication defect of a virus lacking UL97 in dividing cells, validating this explanation. However, as complementation was incomplete, we investigated whether the HCMV nuclear egress complex (NEC) subunits UL50 and UL53, which are required for nuclear egress and recruit UL97 to the nuclear rim, are UL97 substrates. Using mass spectrometry, we detected UL97-dependent phosphorylation of UL50 residue S216 (UL50-S216) and UL53-S19 in infected cells. Moreover, UL53-S19 was specifically phosphorylated by UL97 in vitro. Notably, treatment of infected cells with the UL97 inhibitor maribavir or infection with a UL97 mutant led to a punctate rather than a continuous distribution of the NEC at the nuclear rim. Alanine substitutions in both UL50-S216 and UL53-S19 resulted in a punctate distribution of the NEC in infected cells and also decreased virus production and nuclear egress in the absence of maribavir. These results indicate that UL97 phosphorylates the NEC and suggest that this phosphorylation modulates nuclear egress. Thus, the UL97-NEC interaction appears to recruit UL97 to the nuclear rim both for disruption of the nuclear lamina and phosphorylation of the NEC. IMPORTANCE: Human cytomegalovirus (HCMV) causes birth defects and it can cause life-threatening diseases in immunocompromised patients. HCMV assembles in the nucleus and then translocates to the cytoplasm in an unusual process termed nuclear egress, an attractive target for antiviral therapy. A viral enzyme, UL97, is important for nuclear egress. It has been proposed that this is due to its role in disruption of the nuclear lamina, which would otherwise impede nuclear egress. In validating this proposal, we showed that independent disruption of the lamina can overcome a loss of UL97, but only partly, suggesting additional roles for UL97 during nuclear egress. We then found that UL97 phosphorylates the viral nuclear egress complex (NEC), which is essential for nuclear egress, and we obtained evidence that this phosphorylation modulates this process. Our results highlight a new role for UL97, the mutual dependence of the viral NEC and UL97 during nuclear egress, and differences among herpesviruses.


Assuntos
Núcleo Celular/virologia , Citomegalovirus/fisiologia , Interações Hospedeiro-Patógeno , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Liberação de Vírus , Humanos , Lamina Tipo A/metabolismo , Espectrometria de Massas , Fosforilação
16.
Antimicrob Agents Chemother ; 59(1): 226-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348532

RESUMO

Human cytomegalovirus (HCMV) infection can cause severe illnesses, including encephalopathy and mental retardation, in immunocompromised and immunologically immature patients. Current pharmacotherapies for treating systemic HCMV infections include ganciclovir, cidofovir, and foscarnet. However, long-term administration of these agents can result in serious adverse effects (myelosuppression and/or nephrotoxicity) and the development of viral strains with reduced susceptibility to drugs. The deoxyribosylindole (indole) nucleosides demonstrate a 20-fold greater activity in vitro (the drug concentration at which 50% of the number of plaques was reduced with the presence of drug compared to the number in the absence of drug [EC50] = 0.34 µM) than ganciclovir (EC50 = 7.4 µM) without any observed increase in cytotoxicity. Based on structural similarity to the benzimidazole nucleosides, we hypothesize that the indole nucleosides target the HCMV terminase, an enzyme responsible for packaging viral DNA into capsids and cleaving the DNA into genome-length units. To test this hypothesis, an indole nucleoside-resistant HCMV strain was isolated, the open reading frames of the genes that encode the viral terminase were sequenced, and a G766C mutation in exon 1 of UL89 was identified; this mutation resulted in an E256Q change in the amino acid sequence of the corresponding protein. An HCMV wild-type strain, engineered with this mutation to confirm resistance, demonstrated an 18-fold decrease in susceptibility to the indole nucleosides (EC50 = 3.1 ± 0.7 µM) compared to that of wild-type virus (EC50 = 0.17 ± 0.04 µM). Interestingly, this mutation did not confer resistance to the benzimidazole nucleosides (EC50 for wild-type HCMV = 0.25 ± 0.04 µM, EC50 for HCMV pUL89 E256Q = 0.23 ± 0.04 µM). We conclude, therefore, that the G766C mutation that results in the E256Q substitution is unique for indole nucleoside resistance and distinct from previously discovered substitutions that confer both indole and benzimidazole nucleoside resistance (D344E and A355T).


Assuntos
Benzimidazóis/farmacologia , Citomegalovirus/efeitos dos fármacos , Desoxirribonucleosídeos/farmacologia , Farmacorresistência Viral/genética , Indóis/farmacologia , Ribonucleosídeos/farmacologia , Proteínas Virais/genética , Sequência de Aminoácidos , Antivirais/farmacologia , Sequência de Bases , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , Dados de Sequência Molecular , Mutação
17.
J Virol ; 88(1): 249-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24155370

RESUMO

Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them.


Assuntos
Citomegalovirus/fisiologia , Lâmina Nuclear/metabolismo , Proteínas Quinases/metabolismo , Proteínas Virais/fisiologia , Sequência de Aminoácidos , Linhagem Celular , Núcleo Celular , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral
18.
J Virol ; 88(11): 6047-60, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24623439

RESUMO

UNLABELLED: We report that UL133-UL138 (UL133/8), a transcriptional unit within the ULb' region (ULb') of the human cytomegalovirus (HCMV) genome, and UL97, a viral protein kinase encoded by HCMV, play epistatic roles in facilitating progression of the viral lytic cycle. In studies with HCMV strain TB40/E, pharmacological blockade or genetic ablation of UL97 significantly reduced the levels of mRNA and protein for IE2 and viral early and early-late genes during a second wave of viral gene expression that commenced at between 24 and 48 h postinfection. These effects were accompanied by significant defects in viral DNA synthesis and viral replication. Interestingly, deletion of UL133/8 likewise caused significant defects in viral DNA synthesis, viral gene expression, and viral replication, which were not exacerbated upon UL97 inhibition. When UL133/8 was restored to HCMV laboratory strain AD169, which otherwise lacks the locus, the resulting recombinant virus replicated similarly to the parental virus. However, during UL97 inhibitor treatment, the virus in which UL133/8 was restored showed significantly exacerbated defects in viral DNA synthesis, viral gene expression, and production of infectious progeny virus, thus recapitulating the differences between wild-type TB40/E and its UL133/8-null derivative. Phenotypic evaluation of mutants null for specific open reading frames within UL133/8 revealed a role for UL135 in promoting viral gene expression, viral DNA synthesis, and viral replication, which depended on UL97. Taken together, our findings suggest that UL97 and UL135 play interdependent roles in promoting the progression of a second phase of the viral lytic cycle and that these roles are crucial for efficient viral replication. IMPORTANCE: A unique feature of the herpesviruses, such as human cytomegalovirus (HCMV), is that they can undergo latency, a state during which the virus silences its gene expression, which allows lifelong viral persistence in immunocompetent hosts. We have uncovered an unexpected link between a cluster of HCMV genes involved in latency, UL133-UL138, and a virally encoded protein kinase, UL97, which plays crucial roles in manipulating the cell cycle during HCMV lytic replication. Although viral immediate early (IE) gene expression is essential for HCMV lytic replication, the activation of IE gene expression in latently infected cells is not sufficient to result in production of infectious virus. Our findings here and in an accompanying study (M. Umashankar, M. Rak, F. Bughio, P. Zagallo, K. Caviness, and F. D. Goodrum, J. Virol. 88:5987-6002, 2014) show that proteins expressed from the UL133-UL138 latency locus and UL97 play interdependent roles in overcoming checkpoints that restrict the viral lytic replication cycle, findings which suggest intriguing implications for establishment of and reactivation from HCMV latency.


Assuntos
Citomegalovirus/fisiologia , Epistasia Genética/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Virais/metabolismo , Latência Viral/genética , Replicação Viral/fisiologia , Benzimidazóis , Western Blotting , Cromossomos Artificiais Bacterianos , Citomegalovirus/genética , Primers do DNA/genética , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Reação em Cadeia da Polimerase em Tempo Real , Ribonucleosídeos , Proteínas Virais/genética , Replicação Viral/genética
19.
J Virol ; 87(9): 5019-27, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23427156

RESUMO

Human cytomegalovirus (HCMV) encodes one conventional protein kinase, UL97. During infection, UL97 phosphorylates the retinoblastoma tumor suppressor protein (pRb) on sites ordinarily phosphorylated by cyclin-dependent kinases (CDK), inactivating the ability of pRb to repress host genes required for cell cycle progression to S phase. UL97 is important for viral DNA synthesis in quiescent cells, but this function can be replaced by human papillomavirus type 16 E7, which targets pRb for degradation. However, viruses in which E7 replaces UL97 are still defective for virus production. UL97 is also required for efficient nuclear egress of viral nucleocapsids, which is associated with disruption of the nuclear lamina during infection, and phosphorylation of lamin A/C on serine 22, which antagonizes lamin polymerization. We investigated whether inactivation of pRb might overcome the requirement of UL97 for these roles, as pRb inactivation induces CDK1, and CDK1 phosphorylates lamin A/C on serine 22. We found that lamin A/C serine 22 phosphorylation during HCMV infection correlated with expression of UL97 and was considerably delayed in UL97-null mutants, even when E7 was expressed. E7 failed to restore gaps in the nuclear lamina seen in wild-type but not UL97-null virus infections. In electron microscopy analyses, a UL97-null virus expressing E7 was as impaired as a UL97-null mutant in cytoplasmic accumulation of viral nucleocapsids. Our results demonstrate that pRb inactivation is insufficient to restore efficient viral nuclear egress of HCMV in the absence of UL97 and instead argue further for a direct role of UL97 in this stage of the infectious cycle.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/enzimologia , Lâmina Nuclear/virologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteína do Retinoblastoma/metabolismo , Liberação de Vírus , Linhagem Celular , Núcleo Celular/química , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Citomegalovirus/genética , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Humanos , Lamina Tipo A/química , Lamina Tipo A/metabolismo , Lâmina Nuclear/química , Lâmina Nuclear/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Polimerização , Proteína do Retinoblastoma/genética
20.
J Virol ; 87(11): 6359-76, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23536674

RESUMO

We report a requirement for the viral protein kinase UL97 in human cytomegalovirus (HCMV) replication that maps to the ULb' region of the viral genome. A UL97-null (Δ97) mutant of strain TB40/E, which encodes a full-length ULb' region, exhibited replication defects, particularly in production of cell-free virus, that were more severe than those seen with a Δ97 mutant of laboratory strain AD169, which harbors extensive deletions in its ULb' region. These differences were recapitulated with additional HCMV strains by treatment with a UL97 kinase inhibitor, 1-(ß-L-ribofuranosyl)-2-isopropylamino-5,6-dichlorobenzimidazole (maribavir). We observed lower levels of viral DNA synthesis and an increased requirement for UL97 in viral late gene expression in strains with full-length ULb' regions. Analysis of UL97-deficient TB40/E infections by electron microscopy revealed fewer C-capsids in nuclei, unusual viral particles in the cytoplasmic assembly compartment, and defective viral nuclear egress. Partial inhibition of viral DNA synthesis caused defects in production of cell-free virus that were up to ≈ 100-fold greater than those seen with cell-associated virus in strains TB40/E and TR, suggesting that UL97-dependent defects in cell-free virus production in strains with full-length ULb' regions were secondary to DNA synthesis defects. Accordingly, a chimeric virus in which the ULb' region of TB40/E was replaced with that of AD169 showed reduced effects of UL97 inhibition on viral DNA synthesis, late gene expression, and production of cell-free virus compared to parental TB40/E. Together, these results argue that the ULb' region encodes a factor(s) which invokes an increased requirement for UL97 during viral DNA synthesis.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/enzimologia , Genoma Viral , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Citomegalovirus/genética , Citomegalovirus/fisiologia , Regulação Viral da Expressão Gênica , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA