Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Pathol ; 188(5): 1132-1148, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29454750

RESUMO

Numerous clinical conditions can lead to organ fibrosis and functional failure. There is a great need for therapies that could effectively target pathophysiological pathways involved in fibrosis. GPR40 and GPR84 are G protein-coupled receptors with free fatty acid ligands and are associated with metabolic and inflammatory disorders. Although GPR40 and GPR84 are involved in diverse physiological processes, no evidence has demonstrated the relevance of GPR40 and GPR84 in fibrosis pathways. Using PBI-4050 (3-pentylbenzeneacetic acid sodium salt), a synthetic analog of a medium-chain fatty acid that displays agonist and antagonist ligand affinity toward GPR40 and GPR84, respectively, we uncovered an antifibrotic pathway involving these receptors. In experiments using Gpr40- and Gpr84-knockout mice in models of kidney fibrosis (unilateral ureteral obstruction, long-term post-acute ischemic injury, and adenine-induced chronic kidney disease), we found that GPR40 is protective and GPR84 is deleterious in these diseases. Moreover, through binding to GPR40 and GPR84, PBI-4050 significantly attenuated fibrosis in many injury contexts, as evidenced by the antifibrotic activity observed in kidney, liver, heart, lung, pancreas, and skin fibrosis models. Therefore, GPR40 and GPR84 may represent promising molecular targets in fibrosis pathways. We conclude that PBI-4050 is a first-in-class compound that may be effective for managing inflammatory and fibrosis-related diseases.


Assuntos
Nefropatias/patologia , Receptores Acoplados a Proteínas G/metabolismo , Insuficiência Renal Crônica/patologia , Animais , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Nefropatias/genética , Nefropatias/metabolismo , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo
2.
Clin Sci (Lond) ; 132(13): 1453-1470, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29739827

RESUMO

Neuronal ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that maintains intracellular ubiquitin pools and promotes axonal transport. Uchl1 deletion in mice leads to progressive axonal degeneration, affecting the dorsal root ganglion that harbors axons emanating to the kidney. Innervation is a crucial regulator of renal hemodynamics, though the contribution of neuronal UCHL1 to this is unclear. Immunofluorescence revealed significant neuronal UCHL1 expression in mouse kidney, including periglomerular axons. Glomerular filtration rate trended higher in 6-week-old Uchl1-/- mice, and by 12 weeks of age, these displayed significant glomerular hyperfiltration, coincident with the onset of neurodegeneration. Angiotensin converting enzyme inhibition had no effect on glomerular filtration rate of Uchl1-/- mice indicating that the renin-angiotensin system does not contribute to the observed hyperfiltration. DCE-MRI revealed increased cortical renal blood flow in Uchl1-/- mice, suggesting that hyperfiltration results from afferent arteriole dilation. Nonetheless, hyperglycemia, cyclooxygenase-2, and nitric oxide synthases were ruled out as sources of hyperfiltration in Uchl1-/- mice as glomerular filtration rate remained unchanged following insulin treatment, and cyclooxygenase-2 and nitric oxide synthase inhibition. Finally, renal nerve dysfunction in Uchl1-/- mice is suggested given increased renal nerve arborization, decreased urinary norepinephrine, and impaired vascular reactivity. Uchl1-deleted mice demonstrate glomerular hyperfiltration associated with renal neuronal dysfunction, suggesting that neuronal UCHL1 plays a crucial role in regulating renal hemodynamics.


Assuntos
Taxa de Filtração Glomerular/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Ubiquitina Tiolesterase/fisiologia , Animais , Arteríolas/fisiopatologia , Ciclo-Oxigenase 2/metabolismo , Intolerância à Glucose/fisiopatologia , Rim/inervação , Rim/metabolismo , Camundongos Knockout , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase/metabolismo , Artéria Renal/fisiopatologia , Circulação Renal/fisiologia , Sistema Renina-Angiotensina/fisiologia , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/metabolismo , Resistência Vascular/fisiologia
3.
Antioxid Redox Signal ; 30(15): 1817-1830, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30070142

RESUMO

AIMS: Oxidative stress associated with a proinflammatory state occurs in endothelial dysfunction, hypertension, chronic kidney disease, and diabetes. The NADPH oxidase (Nox) family of reactive oxygen species (ROS) generating enzymes is implicated in these processes, yet little information regarding the role of Nox5 is available. Our aim was to investigate the role of Nox5 in promoting renal inflammation and identify mechanisms regulating its activity. RESULTS: Mice with podocyte-specific Nox5 (Nox5pod+) expression demonstrated greater glomerular inflammation and increased expression of Toll-like receptors (TLRs) and proinflammatory cytokines. In a lipopolysaccharide (LPS) model of acute kidney injury, Nox5pod+ and control littermates exhibited increased TLR and Nox1 expression. Compared with control littermates, Nox5pod+ animals developed greater glomerular inflammation and ROS production. Immortalized human podocytes (hPODs) incubated with LPS demonstrated TLR induction, increased Nox5 expression, and enhanced ROS production. Inhibition of interleukin-1 receptor-associated kinases (IRAK)-1 and -4 that lie downstream of TLR inhibited LPS-induced ROS production. Interaction between IRAK1 and Nox5 was confirmed by coimmunoprecipitation. Furthermore, LPS treatment of hPODs resulted in phosphorylation of threonine residue(s) in Nox5 that was attenuated by an IRAK1/4 inhibitor. Innovation and Conclusion: These results are the first to demonstrate that Nox5 is a downstream target of the TLR pathway and that Nox5-derived ROS may be modulated by IRAK1/4 activity. Nox5-derived ROS in podocytes can promote a proinflammatory state in the kidney via induction of cytokine expression and upregulation of TLRs leading to a feed-forward loop in which TLR activation enhances Nox5-mediated ROS production.


Assuntos
NADPH Oxidase 5/genética , Nefrite/etiologia , Nefrite/metabolismo , Podócitos/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Biomarcadores , Biópsia , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Mediadores da Inflamação/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , NADPH Oxidase 5/metabolismo , Nefrite/patologia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA