Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 13(35): 24767-24776, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37601590

RESUMO

AlCl3-loaded ZnO nanoparticles have been explored as an efficient catalyst for 1,4-dihydropyridine synthesis under ambient temperature and solvent-free conditions. For this purpose, ZnO nanoparticles were synthesized by a simple solution-based precipitation technique using a stoichiometric amount of zinc sulfate and oxalic acid. The AlCl3@ZnO nanocrystalline catalyst was prepared by loading 20% AlCl3 on ZnO nanoparticles by a simple wet-impregnation technique. This catalyst efficiently performed Hantzsch pyridine reactions with various aromatic aldehydes, ethyl acetoacetate and ammonium acetate. The nanostructured AlCl3-loaded ZnO catalyst was characterized by UV-DRS, XRD, FESEM, EDS, FETEM-STEM-EDS and XPS techniques. The comprehensive characterization reveals the formation of AlCl3-loaded ZnO catalysts with an average particle size of 70-80 nm. The loading of AlCl3 on the ZnO surface was confirmed by minor shifts in the XPS and XRD peaks. FETEM-STEM-EDS also indicates reasonable AlCl3 loading on ZnO nanoparticles. The 20% AlCl3-loaded ZnO nanocatalyst (AlCl3@ZnO) confers 92% yield for the synthesis of 1,4-dihydropyridine under solvent-free and ambient temperature conditions. The synthesized 1,4-dihydropyridines were characterized by 1H-NMR, 13C-NMR, HRMS and FT-IR spectroscopic techniques. The reported catalyst is highly efficient, environmentally friendly and could become an alternative to homogenous and heterogenous catalytic reactions.

3.
RSC Adv ; 10(45): 26997-27005, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515785

RESUMO

Herein, we report nitrogen-doped TiO2 (N-TiO2) solid-acid nanocatalysts with heterogeneous structure employed for the solvent-free synthesis of α-aminophosphonates through Kabachnik-Fields reaction. N-TiO2 were synthesized by direct amination using triethylamine as a source of nitrogen at low temperature and optimized by varying the volume ratios of TiCl4, methanol, water, and triethylamine, under identical conditions. An X-ray diffraction (XRD) study showed the formation of a rutile phase and the crystalline size is 10 nm. The nanostructural features of N-TiO2 were examined by HR-TEM analysis, which showed they had rod-like morphology with a diameter of ∼7 to 10 nm. Diffuse reflectance spectra show the extended absorbance in the visible region with a narrowing in the band gap of 2.85 eV, and the high resolution XPS spectrum of the N 1s region confirmed successful doping of N in the TiO2 lattice. More significantly, we found that as-synthesized N-TiO2 showed significantly higher catalytic activity than commercially available TiO2 for the synthesis of a novel series of α-amino phosphonates via Kabachnik-Fields reaction under microwave irradiation conditions. The improved catalytic activity is due to the presence of strong and Bronsted acid sites on a porous nanorod surface. This work signifies N-TiO2 is an efficient stable catalyst for the synthesis of α-aminophosphonate derivatives.

4.
RSC Adv ; 9(56): 32735-32743, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35529759

RESUMO

One-pot green synthesis of propargylamines using ZnCl2 loaded TiO2 nanomaterial under solvent-free conditions has been effectively accomplished. The aromatic aldehydes, amines, and phenylacetylene were reacted at 100 °C in the presence of the resultant catalyst to form propargylamines. The nanocrystalline TiO2 was initially synthesized by a sol-gel method from titanium(iv) isopropoxide (TTIP) and further subjected to ZnCl2 loading by a wet impregnation method. X-ray diffraction (XRD) patterns revealed the formation of crystalline anatase phase TiO2. Field emission scanning electron microscopy (FESEM) showed the formation of agglomerated spheroid shaped particles having a size in the range of 25-45 nm. Transmission electron microscopy (TEM) validates cubical faceted and nanospheroid-like morphological features with clear faceted edges for the pure TiO2 sample. Surface loading of ZnCl2 on spheroid TiO2 nanoparticles is evident in the case of the ZnCl2 loaded TiO2 sample. X-ray photoelectron spectroscopy (XPS) confirmed the presence of Ti4+ and Zn2+ species in the ZnCl2 loaded TiO2 catalyst. Energy-dispersive X-ray (EDS) spectroscopy also confirmed the existence of Ti, O, Zn and Cl elements in the nanostructured catalyst. 15% ZnCl2 loaded TiO2 afforded the highest 97% yield for 3-(1-morpholino-3-phenylprop-2-ynyl)phenol, 2-(1-morpholino-3-phenylprop-2-ynyl)phenol and 4-(1,3-diphenylprop-2-ynyl)morpholine under solvent-free and aerobic conditions. The proposed nanostructure-based heterogeneous catalytic reaction protocol is sustainable, environment-friendly and offers economic viability in terms of recyclability of the catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA