Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biodegradation ; 34(3): 215-233, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36808269

RESUMO

Understanding the biotransformation mechanisms of toxic sulfur-containing polycyclic aromatic hydrocarbon (PASH) pollutants such as benzothiophene (BT) is useful for predicting their environmental fates. In the natural environment, nondesulfurizing hydrocarbon-degrading bacteria are major active contributors to PASH biodegradation at petroleum-contaminated sites; however, BT biotransformation pathways by this group of bacteria are less explored when compared to desulfurizing organisms. When a model nondesulfurizing polycyclic aromatic hydrocarbon-degrading soil bacterium, Sphingobium barthaii KK22, was investigated for its ability to cometabolically biotransform BT by quantitative and qualitative methods, BT was depleted from culture media but was biotransformed into mostly high molar mass (HMM) hetero and homodimeric ortho-substituted diaryl disulfides (diaryl disulfanes). HMM diaryl disulfides have not been reported as biotransformation products of BT. Chemical structures were proposed for the diaryl disulfides by comprehensive mass spectrometry analyses of the chromatographically separated products and were supported by the identification of transient upstream BT biotransformation products, which included benzenethiols. Thiophenic acid products were also identified, and pathways that described BT biotransformation and novel HMM diaryl disulfide formation were constructed. This work shows that nondesulfurizing hydrocarbon-degrading organisms produce HMM diaryl disulfides from low molar mass polyaromatic sulfur heterocycles, and this may be taken into consideration when predicting the environmental fates of BT pollutants.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Sphingomonadaceae , Biotransformação , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Sphingomonadaceae/metabolismo , Biodegradação Ambiental , Enxofre/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo
2.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33637573

RESUMO

In many bacteria, cyclic diguanosine monophosphate (c-di-GMP), synthesized by diguanylate cyclase (DGC), serves as a second messenger involved in the regulation of biofilm formation. Although studies have suggested that c-di-GMP also regulates the formation of electrochemically active biofilms (EABFs) by Shewanella oneidensis MR-1, DGCs involved in this process remained to be identified. Here, we report that the SO_1646 gene, hereafter named dgcS, is upregulated under medium flow conditions in electrochemical flow cells (EFCs), and its product (DgcS) functions as a major DGC in MR-1. In vitro assays demonstrated that purified DgcS catalyzed the synthesis of c-di-GMP from GTP. Comparisons of intracellular c-di-GMP levels in the wild-type strain and a dgcS deletion mutant (ΔdgcS mutant) showed that production of c-di-GMP was markedly reduced in the ΔdgcS mutant when cells were grown in batch cultures and on electrodes in EFCs. Cultivation of the ΔdgcS mutant in EFCs also revealed that the loss of DgcS resulted in impaired biofilm formation and decreased current generation. These findings demonstrate that MR-1 uses DgcS to synthesize c-di-GMP under medium flow conditions, thereby activating biofilm formation on electrodes.IMPORTANCE Bioelectrochemical systems (BESs) have attracted wide attention owing to their utility in sustainable biotechnology processes, such as microbial fuel cells and electrofermentation systems. In BESs, electrochemically active bacteria (EAB) form biofilms on electrode surfaces, thereby serving as effective catalysts for the interconversion between chemical and electric energy. It is therefore important to understand mechanisms for the formation of biofilm by EAB grown on electrodes. Here, we show that a model EAB, S. oneidensis MR-1, expresses DgcS as a major DGC, thereby activating the formation of biofilms on electrodes via c-di-GMP-dependent signal transduction cascades. The findings presented herein provide the molecular basis for improving electrochemical interactions between EAB and electrodes in BESs. The results also offer molecular insights into how Shewanella regulates biofilm formation on solid surfaces in the natural environment.


Assuntos
Proteínas de Bactérias/fisiologia , Biofilmes , Proteínas de Escherichia coli/fisiologia , Fósforo-Oxigênio Liases/fisiologia , Shewanella/fisiologia , Proteínas de Bactérias/genética , Fontes de Energia Bioelétrica , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Eletrodos/microbiologia , Proteínas de Escherichia coli/genética , Fósforo-Oxigênio Liases/genética , Shewanella/genética
3.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33067200

RESUMO

A soil bacterial consortium that was grown on diesel fuel and consisted of more than 10 members from different genera was maintained through repetitive subculturing and was utilized as a practical model to investigate a bacterial community that was continuously exposed to petroleum hydrocarbons. Through metagenomics analyses, consortium member isolation, growth assays, and metabolite identification which supported the linkage of genomic data and functionality, two pioneering genera, Sphingobium and Pseudomonas, whose catabolic capabilities were differentiated, were found to be responsible for the creation of specialized ecological niches that were apparently occupied by other bacterial members for survival within the consortium. Coexisting genera Achromobacter and Cupriavidus maintained their existence in the consortium through metabolic dependencies by utilizing hydrocarbon biotransformation products of pioneer metabolism, which was confirmed through growth tests and identification of biotransformation products of the isolated strains. Pioneering Sphingobium and Pseudomonas spp. utilized relatively water-insoluble hydrocarbon parent compounds and facilitated the development of a consortium community structure that resulted in the creation of niches in response to diesel fuel exposure which were created through the production of more-water-soluble biotransformation products available to cocolonizers. That these and other organisms were still present in the consortium after multiple transfers spanning 15 years provided evidence for these ecological niches. Member survival through occupation of these niches led to robustness of each group within the multispecies bacterial community. Overall, these results contribute to our understanding of the complex ecological relationships that may evolve during prokaryotic hydrocarbon pollutant biodegradation.IMPORTANCE There are few metagenome studies that have explored soil consortia maintained on a complex hydrocarbon substrate after the community interrelationships were formed. A soil bacterial consortium maintained on diesel fuel was utilized as a practical model to investigate bacterial community relationships through metagenomics analyses, consortium member isolation, growth assays, and metabolite identification, which supported the linkage of genomic data and functionality. Two pioneering genera were responsible for the biodegradation of aromatics and alkanes by initiating biotransformation and thereby created specialized niches that were populated by other members. A model that represents these relationships was constructed, which contributes to our understanding of the complex ecological relationships that evolve during prokaryotic hydrocarbon pollutant biodegradation.


Assuntos
Gasolina , Hidrocarbonetos/metabolismo , Consórcios Microbianos , Proteobactérias/metabolismo , Microbiologia do Solo , Biodegradação Ambiental
4.
Chem Res Toxicol ; 32(9): 1760-1771, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31430133

RESUMO

Quinones may be formed metabolically or abiotically from environmental pollutants and polycyclic aromatic hydrocarbons (PAHs); many are recognized as toxicological intermediates that cause a variety of deleterious cellular effects including mutagenicity. The PAH-o-quinone, 1,2-naphthoquinone (1,2-NQ), may exert its genotoxic effects through interactions with cellular nucleophiles such as DNA, however, the mechanisms of 1,2-NQ adduct formation are still under investigation. With the aim to further understand these mechanisms, the chemical structures of adducts formed from the reaction of 2'-deoxyguanosine (dG) with 1,2-NQ under physiological conditions were investigated by liquid chromatography electrospray ionization tandem mass spectrometry and 1H NMR analyses. Results showed that 1,2-NQ underwent non-enzymatic oxidation to form a 1,2-NQ-epoxide which in turn formed at least four bulky adducts with dG, and these adducts were more likely to be formed under physiological conditions. A mechanism was proposed whereby hydration of 1,2-NQ to form unstable naphthohydroquinones and 2-hydroxy-1,4-naphthoquinone resulted in formation of hydrogen peroxide that oxidized 1,2-NQ. These results suggest that the genotoxicity of 1,2-NQ may not only be caused through oxidative DNA damage and adduct formation through Michael addition but also through non-enzymatic oxidative transformation of 1,2-NQ itself to form an intermediate PAH-epoxide which covalently binds to DNA.


Assuntos
Adutos de DNA/síntese química , DNA/química , Compostos de Epóxi/síntese química , Mutagênicos/química , Naftoquinonas/química , Dano ao DNA/efeitos dos fármacos , Desoxiguanosina/química , Peróxido de Hidrogênio/química , Oxirredução
5.
Plant Cell Physiol ; 57(1): 105-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26578695

RESUMO

The cyanobacterial circadian-related protein, Pex, accumulates in the dark period of the diurnal light-dark cycle. After the diurnal cycle, an approximately 3 h advance in the phase of the circadian bioluminescence rhythm is observed in pex-deficient mutants, as compared with the wild type. However, it is unclear what type of photosensing mechanism regulates the accumulation and the phase change. In monochromatic light irradiation experiments, Pex accumulation was strongly repressed under blue light conditions; however, only small reductions in Pex accumulation were observed under red or green light conditions. After the diurnal cycle of 12 h of white fluorescent light and 12 h of blue light, the phase advance was repressed more than that of the cycle of 12 h red (or green) light. The phase advance also occurred after 16 h light/8 h dark cycles (long-day cycles) but did not occur after 8 h light/16 h dark cycles (short-day cycles). While Pex is a unique winged helix transcription factor harboring secondary structures (α0 and α4 helices), the importance of the structures is not understood. In in vivo experiments with site-directed mutations in the α0 helix, the obtained mutants, in which Pex was missing the hydrophobic side chain at the 28th or 32nd amino acid residue, exhibited no phase delay after the light/dark cycle. In in vitro DNA binding assays, the mutant proteins showed no binding to the promoter region of the clock gene kaiA. From these results, we propose a molecular model which describes the phase delay in cyanobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Ritmo Circadiano/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Synechococcus/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Luz , Modelos Moleculares , Mutação , Fotoperíodo , Regiões Promotoras Genéticas/genética , Estrutura Secundária de Proteína , Alinhamento de Sequência , Synechococcus/genética , Synechococcus/efeitos da radiação
6.
Electrophoresis ; 37(22): 2959-2962, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27500714

RESUMO

To detect metalloproteinase-7 (MMP7), zymography is conducted using a casein substrate and conventional CBB stain. It has disadvantages because it is time consuming and has low sensitivity. Previously, a sensitive method to detect MMP7 up to 30 pg was reported, however it required special substrates and complicated handlings. RAMA casein zymography described herein is rapid, sensitive, and reproducible. By applying high-sensitivity staining with low substrate conditions, the staining process is completed within 1 h and sensitivity was increased 100-fold. The method can detect 10 pg MMP7 by using commercially available casein without complicated handlings. Moreover, it increases detection sensitivity for trypsin.


Assuntos
Caseínas/química , Eletroforese em Gel de Poliacrilamida/métodos , Indicadores e Reagentes/química , Metaloproteinase 7 da Matriz/análise , Tripsina/metabolismo , Caseínas/metabolismo , Humanos , Metaloproteinase 7 da Matriz/química , Metaloproteinase 7 da Matriz/metabolismo , Corantes de Rosanilina/química , Sensibilidade e Especificidade , Fatores de Tempo
7.
Int J Syst Evol Microbiol ; 65(9): 2919-2924, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26012583

RESUMO

A Gram-stain-negative, yellow, rod-shaped bacterium, designated strain KK22(T), was isolated from a microbial consortium that grew on diesel fuel originally recovered from cattle pasture soil. Strain KK22(T) has been studied for its ability to biotransform high molecular weight polycyclic aromatic hydrocarbons. On the basis of 16S rRNA gene sequence phylogeny, strain KK22(T) was affiliated with the genus Sphingobium in the phylum Proteobacteria and was most closely related to Sphingobium fuliginis TKP(T) (99.8%) and less closely related to Sphingobium quisquiliarum P25(T) (97.5%). Results of DNA-DNA hybridization (DDH) revealed relatedness values between strain KK22(T) and strain TKP(T) and between strain KK22(T) and strain P25(T) of 21 ± 4% (reciprocal hybridization, 27 ± 2%) and 15 ± 2% (reciprocal hybridization, 17 ± 1%), respectively. Chemotaxonomic analyses of strain KK22(T) showed that the major respiratory quinone was ubiquinone Q-10, that the polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidyl-N-methylethylethanolamine and sphingoglycolipid, and that C18 : 1ω7c and C14 : 0 2-OH were the main fatty acid and hydroxylated fatty acids, respectively. This strain was unable to reduce nitrate and the genomic DNA G+C content was 64.7 mol%. Based upon the results of the DDH analyses, the fact that strain KK22(T) was motile, and its biochemical and physiological characteristics, strain KK22(T) could be separated from recognized species of the genus Sphingobium. We conclude that strain KK22(T) represents a novel species of this genus for which the name Sphingobium barthaii sp. nov. is proposed; the type strain is KK22(T) ( = DSM 29313(T) = JCM 30309(T)).


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Sphingomonadaceae/classificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Bovinos , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Peso Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Filogenia , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Ubiquinona/química
8.
Mar Drugs ; 13(12): 7377-89, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26694420

RESUMO

MytiLec; a novel lectin isolated from the Mediterranean mussel (Mytilus galloprovincialis); shows strong binding affinity to globotriose (Gb3: Galα1-4Galß1-4Glc). MytiLec revealed ß-trefoil folding as also found in the ricin B-subunit type (R-type) lectin family, although the amino acid sequences were quite different. Classification of R-type lectin family members therefore needs to be based on conformation as well as on primary structure. MytiLec specifically killed Burkitt's lymphoma Ramos cells, which express Gb3. Fluorescein-labeling assay revealed that MytiLec was incorporated inside the cells. MytiLec treatment of Ramos cells resulted in activation of both classical MAPK/ extracellular signal-regulated kinase and extracellular signal-regulated kinase (MEK-ERK) and stress-activated (p38 kinase and JNK) Mitogen-activated protein kinases (MAPK) pathways. In the cells, MytiLec treatment triggered expression of tumor necrosis factor (TNF)-α (a ligand of death receptor-dependent apoptosis) and activation of mitochondria-controlling caspase-9 (initiator caspase) and caspase-3 (activator caspase). Experiments using the specific MEK inhibitor U0126 showed that MytiLec-induced phosphorylation of the MEK-ERK pathway up-regulated expression of the cyclin-dependent kinase inhibitor p21, leading to cell cycle arrest and TNF-α production. Activation of caspase-3 by MytiLec appeared to be regulated by multiple different pathways. Our findings, taken together, indicate that the novel R-type lectin MytiLec initiates programmed cell death of Burkitt's lymphoma cells through multiple pathways (MAPK cascade, death receptor signaling; caspase activation) based on interaction of the lectin with Gb3-containing glycosphingolipid-enriched microdomains on the cell surface.


Assuntos
Apoptose/efeitos dos fármacos , Linfoma de Burkitt/tratamento farmacológico , Lectinas/farmacologia , Animais , Linfoma de Burkitt/patologia , Butadienos/farmacologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Humanos , Células K562 , Lectinas/isolamento & purificação , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mytilus/metabolismo , Nitrilas/farmacologia , Trissacarídeos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Biodegradation ; 26(5): 359-73, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26126873

RESUMO

3-Methylindole, also referred to as skatole, is a pollutant of environmental concern due to its persistence, mobility and potential health impacts. Petroleum refining, intensive livestock production and application of biosolids to agricultural lands result in releases of 3-methylindole to the environment. Even so, little is known about the aerobic biodegradation of 3-methylindole and comprehensive biotransformation pathways have not been established. Using glycerol as feedstock, the soil bacterium Cupriavidus sp. strain KK10 biodegraded 100 mg/L of 3-methylindole in 24 h. Cometabolic 3-methylindole biodegradation was confirmed by the identification of biotransformation products through liquid chromatography electrospray ionization tandem mass spectrometry analyses. In all, 14 3-methylindole biotransformation products were identified which revealed that biotransformation occurred through different pathways that included carbocyclic aromatic ring-fission of 3-methylindole to single-ring pyrrole carboxylic acids. This work provides first comprehensive evidence for the aerobic biotransformation mechanisms of 3-methylindole by a soil bacterium and expands our understanding of the biodegradative capabilities of members of the genus Cupriavidus towards heteroaromatic pollutants.


Assuntos
Cupriavidus/metabolismo , Escatol/metabolismo , Aerobiose , Biodegradação Ambiental , Biotransformação , Estrutura Molecular , Petróleo/análise , Petróleo/metabolismo , Escatol/química , Espectrometria de Massas por Ionização por Electrospray
10.
Molecules ; 19(9): 13990-4003, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25197935

RESUMO

A specific galactose-binding lectin was shown to inhibit the hemolytic effect of streptolysin O (SLO), an exotoxin produced by Streptococcus pyogenes. Commercially available lectins that recognize N-acetyllactosamine (ECA), T-antigen (PNA), and Tn-antigen (ABA) agglutinated rabbit erythrocytes, but had no effect on SLO-induced hemolysis. In contrast, SLO-induced hemolysis was inhibited by AKL, a lectin purified from sea hare (Aplysia kurodai) eggs that recognizes α-galactoside oligosaccharides. This inhibitory effect was blocked by the co-presence of d-galactose, which binds to AKL. A possible explanation for these findings is that cholesterol-enriched microdomains containing glycosphingolipids in the erythrocyte membrane become occupied by tightly stacked lectin molecules, blocking the interaction between cholesterol and SLO that would otherwise result in penetration of the membrane. Growth of S. pyogenes was inhibited by lectins from a marine invertebrate (AKL) and a mushroom (ABA), but was promoted by a plant lectin (ECA). Both these inhibitory and promoting effects were blocked by co-presence of galactose in the culture medium. Our findings demonstrate the importance of glycans and lectins in regulating mechanisms of toxicity, creation of pores in the target cell membrane, and bacterial growth.


Assuntos
Aplysia/química , Eritrócitos/fisiologia , Galectinas/química , Hemólise/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/farmacologia , Eritrócitos/efeitos dos fármacos , Galectinas/isolamento & purificação , Galectinas/farmacologia , Hemolíticos/farmacologia , Testes de Sensibilidade Microbiana , Óvulo/química , Coelhos , Streptococcus pyogenes/efeitos dos fármacos , Estreptolisinas/farmacologia
11.
Microbes Environ ; 39(2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38866480

RESUMO

Mn(II)-oxidizing microorganisms are considered to play significant roles in the natural geochemical cycles of Mn and other heavy metals because the insoluble biogenic Mn oxides (BMOs) that are produced by these microorganisms adsorb other dissolved heavy metals and immobilize them as precipitates. In the present study, a new Mn(II)-oxidizing fungal strain belonging to the ascomycete genus Periconia, a well-studied plant-associating fungal genus with Mn(II)-oxidizing activity that has not yet been exami-ned in detail, was isolated from natural groundwater outflow sediment. This isolate, named strain TS-2, was confirmed to oxidize dissolved Mn(II) and produce insoluble BMOs that formed characteristic, separately-located nodules on their hyphae while leaving major areas of the hyphae free from encrustation. These BMO nodules also adsorbed and immobilized dissolved Cu(II), a model analyte of heavy metals, as evidenced by elemental mapping ana-lyses of fungal hyphae-BMO assemblages using a scanning electron microscope with energy-dispersive X-ray spectroscopy (SEM-EDX). Analyses of functional genes within the whole genome of strain TS-2 further revealed the presence of multiple genes predicted to encode laccases/multicopper oxidases that were potentially responsible for Mn(II) oxidation by this strain. The formation of BMO nodules may have functioned to prevent the complete encrustation of fungal hyphae, thereby enabling the control of heavy metal concentrations in their local microenvironments while maintaining hyphal functionality. The present results will expand our knowledge of the physiological and morphological traits of Mn(II)-oxidizing Periconia, which may affect the natural cycle of heavy metals through their immobilization.


Assuntos
Cobre , Hifas , Compostos de Manganês , Óxidos , Hifas/metabolismo , Hifas/crescimento & desenvolvimento , Cobre/metabolismo , Compostos de Manganês/metabolismo , Óxidos/metabolismo , Óxidos/química , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/química , Oxirredução , Água Subterrânea/microbiologia , Água Subterrânea/química , Filogenia , Sedimentos Geológicos/microbiologia , Microscopia Eletrônica de Varredura , Manganês/metabolismo
12.
J Biol Chem ; 287(53): 44772-83, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23093409

RESUMO

A novel lectin structure was found for a 17-kDa α-D-galactose-binding lectin (termed "MytiLec") isolated from the Mediterranean mussel, Mytilus galloprovincialis. The complete primary structure of the lectin was determined by Edman degradation and mass spectrometric analysis. MytiLec was found to consist of 149 amino acids with a total molecular mass of 16,812.59 Da by Fourier transform-ion cyclotron resonance mass spectrometry, in good agreement with the calculated value of 16,823.22 Da. MytiLec had an N terminus of acetylthreonine and a primary structure that was highly novel in comparison with those of all known lectins in the structure database. The polypeptide structure consisted of three tandem-repeat domains of ∼50 amino acids each having 45-52% homology with each other. Frontal affinity chromatography technology indicated that MytiLec bound specifically to globotriose (Gb3; Galα1-4Galß1-4Glc), the epitope of globotriaosylceramide. MytiLec showed a dose-dependent cytotoxic effect on human Burkitt lymphoma Raji cells (which have high surface expression of Gb3) but had no such effect on erythroleukemia K562 cells (which do not express Gb3). The cytotoxic effect of MytiLec was specifically blocked by the co-presence of an α-galactoside. MytiLec treatment of Raji cells caused increased binding of anti-annexin V antibody and incorporation of propidium iodide, which are indicators of cell membrane inversion and perforation. MytiLec is the first reported lectin having a primary structure with the highly novel triple tandem-repeat domain and showing transduction of apoptotic signaling against Burkitt lymphoma cells by interaction with a glycosphingolipid-enriched microdomain containing Gb3.


Assuntos
Linfoma de Burkitt/metabolismo , Lectinas/química , Lectinas/toxicidade , Mytilus/metabolismo , Polissacarídeos/metabolismo , Triexosilceramidas/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Linfoma de Burkitt/fisiopatologia , Linhagem Celular Tumoral , Humanos , Células K562 , Lectinas/genética , Lectinas/metabolismo , Dados de Sequência Molecular , Mytilus/química , Mapeamento de Peptídeos , Alinhamento de Sequência , Triexosilceramidas/genética
13.
Appl Environ Microbiol ; 79(14): 4410-20, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23686261

RESUMO

A soil bacterium, designated strain KK22, was isolated from a phenanthrene enrichment culture of a bacterial consortium that grew on diesel fuel, and it was found to biotransform the persistent environmental pollutant and high-molecular-weight polycyclic aromatic hydrocarbon (PAH) benz[a]anthracene. Nearly complete sequencing of the 16S rRNA gene of strain KK22 and phylogenetic analysis revealed that this organism is a new member of the genus Sphingobium. An 8-day time course study that consisted of whole-culture extractions followed by high-performance liquid chromatography (HPLC) analyses with fluorescence detection showed that 80 to 90% biodegradation of 2.5 mg liter(-1) benz[a]anthracene had occurred. Biodegradation assays where benz[a]anthracene was supplied in crystalline form (100 mg liter(-1)) confirmed biodegradation and showed that strain KK22 cells precultured on glucose were equally capable of benz[a]anthracene biotransformation when precultured on glucose plus phenanthrene. Analyses of organic extracts from benz[a]anthracene biodegradation by liquid chromatography negative electrospray ionization tandem mass spectrometry [LC/ESI(-)-MS/MS] revealed 10 products, including two o-hydroxypolyaromatic acids and two hydroxy-naphthoic acids. 1-Hydroxy-2- and 2-hydroxy-3-naphthoic acids were unambiguously identified, and this indicated that oxidation of the benz[a]anthracene molecule occurred via both the linear kata and angular kata ends of the molecule. Other two- and single-aromatic-ring metabolites were also documented, including 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid and salicylic acid, and the proposed pathways for benz[a]anthracene biotransformation by a bacterium were extended.


Assuntos
Benzo(a)Antracenos/metabolismo , Poluentes do Solo/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Dados de Sequência Molecular , Compostos Orgânicos , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
14.
Environ Sci Technol ; 47(15): 8616-23, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23802758

RESUMO

Arsenic immobilization and release in the environment is significantly influenced by bacterial oxidation and reduction of arsenic and arsenic-bearing minerals. In this study, we tested three iron-reducing bacteria, Shewanella oneidensis MR-1, Shewanella sp. HN-41, and Shewanella putrefaciens 200, which have diverse arsenate-reducing activities with regard to reduction of an As-bearing ferrihydrite slurry. In the cultures of S. oneidensis MR-1 and Shewanella sp. HN-41, which are not capable of respiratory reduction of As(V) to As(III), arsenic was maintained predominantly in its pentavalent form, existing in particulate poorly crystalline As-bearing ferrihydrite and formed small quantities of a stable ferrous arsenate [Fe3(AsO4)2] precipitate. However, in the culture of the As(V) reducer, S. putrefaciens 200, As(V) was reduced to As(III) and a small fraction of As-bearing ferrihydrite was transformed into ribbon-shaped siderite that subsequently re-released arsenic into the liquid phase. Our results indicated that release of arsenic and formation of diverse secondary nanoscale Fe-As minerals are specifically closely related to the arsenic-reducing abilities of different bacteria. Therefore, bacterial arsenic reduction appears to significantly influence As mobilization in soils, minerals, and other Fe-rich environments.


Assuntos
Arsênio/metabolismo , Compostos Férricos/metabolismo , Ferro/metabolismo , Shewanella/metabolismo , Biodegradação Ambiental , Microscopia Eletrônica de Transmissão , Oxirredução , Espectroscopia por Absorção de Raios X
15.
Microbiol Resour Announc ; 12(12): e0059923, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37929943

RESUMO

Members of the genus Periconia are commonly found as plant-associated filamentous fungi. Here, the first draft genome sequence of a new Periconia strain, TS-2, that was isolated from freshwater outflow sediment and possesses the ability to oxidize dissolved Mn(II), was obtained and has an estimated size of 40.7 Mb.

16.
Mar Genomics ; 72: 101070, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38008530

RESUMO

Bacteria that belong to the family Roseobacteraceae in the Alphaproteobacteria class are widely distributed in marine environments with remarkable physiological diversity, which is considered to be attributed to their genomic plasticity. In this study, a novel isolate of the genus Sagittula within Roseobacteraceae, strain MA-2, was obtained from a coastal marine bacterial consortium enriched with aromatic hydrocarbons, and its complete genome was sequenced. The genome with a total size of 5.69 Mbp was revealed to consist of a 4.67-Mbp circular chromosome and eight circular plasmids ranging in size from 19.5 to 361.5 kbp. Further analyses of functional genes in the strain MA-2 genome identified homologous genes responsible for the biotransformation of gentisic acid, which were located on one of its plasmids and were not found in genomes of other Sagittula strains available from databases. This suggested that strain MA-2 had acquired these genes via horizontal gene transfers that enabled them to degrade and utilize gentisic acid as a growth substrate. This study provided the second complete genome sequence of the genus Sagittula and supports the hypothesis that acquisition of ecologically relevant genes in extrachromosomal replicons allows Roseobacteraceae to be highly adaptable to diverse lifestyles.


Assuntos
Rhodobacteraceae , Plasmídeos/genética , Rhodobacteraceae/genética , Genômica , Genoma Bacteriano , Filogenia
17.
Microbiol Spectr ; : e0483722, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655901

RESUMO

Colony pattern formations of bacteria with motility manifest complicated morphological self-organization phenomena. Leptolyngbya boryana is a filamentous cyanobacterium, which has been used as a genetic model organism for studying metabolism including photosynthesis and nitrogen fixation. A widely used type strain [wild type (WT) in this article] of this species has not been reported to show any motile activity. However, we isolated a spontaneous mutant strain that shows active motility (gliding activity) to give rise to complicated colony patterns, including comet-like wandering clusters and disk-like rotating vortices on solid media. Whole-genome resequencing identified multiple mutations in the genome of the mutant strain. We confirmed that inactivation of the candidate gene dgc2 (LBDG_02920) in the WT background was sufficient to give rise to motility and morphologically complex colony patterns. This gene encodes a protein containing the GGDEF motif which is conserved at the catalytic domain of diguanylate cyclase (DGC). Although DGC has been reported to be involved in biofilm formation, the dgc2 mutant significantly facilitated biofilm formation, suggesting a role for the dgc2 gene in suppressing both gliding motility and biofilm formation. Thus, Leptolyngbya is expected to be an excellent genetic model for studying dynamic colony pattern formation and to provide novel insights into the role of DGC family genes in biofilm formation. IMPORTANCE Self-propelled bacteria often exhibit complex collective behaviors, such as formation of dense-moving clusters, which are exemplified by wandering comet-like and rotating disk-like colonies; however, the molecular details of how these structures are formed are scant. We found that a strain of the filamentous cyanobacterium Leptolyngbya deficient in the GGDEF protein gene dgc2 elicits motility and complex and dynamic colony pattern formation, including comet-like and disk-like clusters. Although c-di-GMP has been reported to activate biofilm formation in some bacterial species, disruption of dgc2 unexpectedly enhanced it, suggesting a novel role for this GGDEF protein for inhibiting both colony pattern formation and biofilm formation.

18.
Appl Environ Microbiol ; 78(15): 5238-46, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22610435

RESUMO

A plasmid, pTA163, in Escherichia coli contained an approximately 34-kb gene fragment from Pseudomonas putida JYR-1 that included the genes responsible for the metabolism of trans-anethole to protocatechuic acid. Three Tn5-disrupted open reading frame 10 (ORF 10) mutants of plasmid pTA163 lost their abilities to catalyze trans-anethole. Heterologously expressed ORF 10 (1,047 nucleotides [nt]) under a T7 promoter in E. coli catalyzed oxidative cleavage of a propenyl group of trans-anethole to an aldehyde group, resulting in the production of para-anisaldehyde, and this gene was designated tao (trans-anethole oxygenase). The deduced amino acid sequence of TAO had the highest identity (34%) to a hypothetical protein of Agrobacterium vitis S4 and likely contained a flavin-binding site. Preferred incorporation of an oxygen molecule from water into p-anisaldehyde using (18)O-labeling experiments indicated stereo preference of TAO for hydrolysis of the epoxide group. Interestingly, unlike the narrow substrate range of isoeugenol monooxygenase from Pseudomonas putida IE27 and Pseudomonas nitroreducens Jin1, TAO from P. putida JYR-1 catalyzed isoeugenol, O-methyl isoeugenol, and isosafrole, all of which contain the 2-propenyl functional group on the aromatic ring structure. Addition of NAD(P)H to the ultrafiltered cell extracts of E. coli (pTA163) increased the activity of TAO. Due to the relaxed substrate range of TAO, it may be utilized for the production of various fragrance compounds from plant phenylpropanoids in the future.


Assuntos
Anisóis/metabolismo , Benzaldeídos/metabolismo , Genes Bacterianos/genética , Redes e Vias Metabólicas/genética , Oxigenases/genética , Pseudomonas putida/genética , Derivados de Alilbenzenos , Sequência de Bases , Biotransformação , Cromatografia Líquida de Alta Pressão , Primers do DNA/genética , Escherichia coli , Biblioteca Gênica , Espectrometria de Massas , Dados de Sequência Molecular , Mutagênese , Oxirredução , Isótopos de Oxigênio/metabolismo , Plasmídeos/genética , Pseudomonas putida/enzimologia , Análise de Sequência de DNA
19.
Microbiol Spectr ; 10(1): e0222521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34985328

RESUMO

Chromids (secondary chromosomes) in bacterial genomes that are present in addition to the main chromosome appear to be evolutionarily conserved in some specific bacterial groups. In rare cases among these groups, a small number of strains from Rhizobiales and Vibrionales were shown to possess a naturally fused single chromosome that was reported to have been generated through intragenomic homologous recombination between repeated sequences on the chromosome and chromid. Similar examples have never been reported in the family Burkholderiaceae, a well-documented group that conserves chromids. Here, an in-depth genomic characterization was performed on a Burkholderiaceae bacterium that was isolated from a soil bacterial consortium maintained on diesel fuel and mutagenic benzo[a]pyrene. This organism, Cupriavidus necator strain KK10, was revealed to carry a single chromosome with unexpectedly large size (>6.6 Mb), and results of comparative genomics with the genome of C. necator N-1T indicated that the single chromosome of KK10 was generated through fusion of the prototypical chromosome and chromid at the rRNA operons. This fusion hypothetically occurred through homologous recombination with a crossover between repeated rRNA operons on the chromosome and chromid. Some metabolic functions that were likely expressed from genes on the prototypical chromid region were indicated to be retained. If this phenomenon-the bacterial chromosome-chromid fusion across the rRNA operons through homologous recombination-occurs universally in prokaryotes, the multiple rRNA operons in bacterial genomes may not only contribute to the robustness of ribosome function, but also provide more opportunities for genomic rearrangements through frequent recombination. IMPORTANCE A bacterial chromosome that was naturally fused with the secondary chromosome, or "chromid," and presented as an unexpectedly large single replicon was discovered in the genome of Cupriavidus necator strain KK10, a biotechnologically useful member of the family Burkholderiaceae. Although Burkholderiaceae is a well-documented group that conserves chromids in their genomes, this chromosomal fusion event has not been previously reported for this family. This fusion has hypothetically occurred through intragenomic homologous recombination between repeated rRNA operons and, if so, provides novel insight into the potential of multiple rRNA operons in bacterial genomes to lead to chromosome-chromid fusion. The harsh conditions under which strain KK10 was maintained-a genotoxic hydrocarbon-enriched milieu-may have provided this genotype with a niche in which to survive.


Assuntos
Burkholderiaceae/genética , Cromossomos Bacterianos/genética , Genoma Bacteriano , Óperon de RNAr , Burkholderiaceae/classificação , Genômica , RNA Bacteriano/genética , Recombinação Genética , Replicon
20.
Microbiol Spectr ; 10(5): e0314922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36190412

RESUMO

The marine bacterial genus Thalassospira has often been identified as an abundant member of polycyclic aromatic hydrocarbon (PAH)-exposed microbial communities. However, despite their potential usability for biotechnological applications, functional genes that are conserved in their genomes have barely been investigated. Thus, the goal of this study was to comprehensively examine the functional genes that were potentially responsible for aromatic hydrocarbon biodegradation in the Thalassospira genomes available from databases, including a new isolate of Thalassospira, strain GO-4, isolated from a phenanthrene-enriched marine bacterial consortium. Strain GO-4 was used in this study as a model organism to link the genomic data and their metabolic functions. Strain GO-4 growth assays confirmed that it utilized a common phenanthrene biodegradation intermediate 2-carboxybenzaldehyde (CBA) as the sole source of carbon and energy, but did not utilize phenanthrene. Consistently, strain GO-4 was found to possess homologous genes of phdK, pht, and pca that encode enzymes for biodegradation of CBA, phthalic acid, and protocatechuic acid, respectively. Further comprehensive genomic analyses for 33 Thalassospira genomes from databases showed that a gene cluster that consisted of phdK and pht homologs was conserved in 13 of the 33 strains. pca gene homologs were found in all examined genomes; however, homologs of the known PAH-degrading genes, such as the pah, phn, or nah genes, were not found. Possibly Thalassospira spp. co-occupy niches with other PAH-degrading bacteria that provide them with PAH degradation intermediates and facilitated their inhabitation in PAH-exposed microbial ecosystems. IMPORTANCE Comprehensive investigation of multiple genomic data sets from targeted microbial taxa deposited in databases may provide substantial information to predict metabolic capabilities and ecological roles in different environments. This study is the first report that details the functional profiling of Thalassospira spp. that have repeatedly been found in polycyclic aromatic hydrocarbon (PAH)-exposed marine bacterial communities by using genomic data from a new isolate, Thalassospira strain GO-4, and other strains in databases. Through screening of functional genes potentially involved in aromatic hydrocarbon biodegradation across 33 Thalassospira genomes and growth assays for strain GO-4, it was suggested that Thalassospira spp. unexceptionally conserved the ability to metabolize single-ring, PAH biodegradation intermediates, while being incapable of utilizing PAHs. This expanded our understanding of this potentially important contributing member to PAH-degrading microbial ecosystems; such species are considered to be specialized in driving downstream reactions of PAH biodegradation.


Assuntos
Microbiota , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Bactérias/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Fenantrenos/metabolismo , Genômica , Carbono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA