Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 152: 105292, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556539

RESUMO

BACKGROUND: Sepsis, a leading cause for intensive care unit admissions, causes both an acute encephalopathy and chronic brain dysfunction in survivors. A history of sepsis is also a risk factor for future development of dementia symptoms. Similar neuropathologic changes are associated with the cognitive decline of sepsis and Alzheimer's disease (AD), including neuroinflammation, neuronal death, and synaptic loss. Amyloid plaque pathology is the earliest pathological hallmark of AD, appearing 10 to 20 years prior to cognitive decline, and is present in 30% of people over 65. As sepsis is also more common in older adults, we hypothesized that sepsis might exacerbate amyloid plaque deposition and plaque-related injury, promoting the progression of AD-related pathology. METHODS: We evaluated whether the brain's response to sepsis modulates AD-related neurodegenerative changes by driving amyloid deposition and neuroinflammation in mice. We induced polymicrobial sepsis by cecal ligation and puncture (CLP) in APP/PS1-21 mice, a model of AD-related ß-amyloidosis. We performed CLP or sham surgery at plaque onset (2 months of age) and examined pathology 2 months after CLP in surviving mice. RESULTS: Sepsis significantly increased fibrillar amyloid plaque formation in the hippocampus of APP/PS1-21 mice. Sepsis enhanced plaque-related astrocyte activation and complement C4b gene expression in the brain, both of which may play a role in modulating amyloid formation. CLP also caused large scale changes in the gut microbiome of APP/PS1 mice, which have been associated with a pro-amyloidogenic and neuroinflammatory state. CONCLUSIONS: Our results suggest that experimental sepsis can exacerbate amyloid plaque deposition and plaque-related inflammation, providing a potential mechanism for increased dementia in older sepsis survivors.


Assuntos
Doença de Alzheimer/patologia , Microbioma Gastrointestinal , Hipocampo/patologia , Placa Amiloide/patologia , Sepse/complicações , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neuroinflamatórias/patologia , Sepse/patologia
2.
JCI Insight ; 9(2)2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38032732

RESUMO

Circadian rhythm dysfunction is a hallmark of Parkinson disease (PD), and diminished expression of the core clock gene Bmal1 has been described in patients with PD. BMAL1 is required for core circadian clock function but also serves nonrhythmic functions. Germline Bmal1 deletion can cause brain oxidative stress and synapse loss in mice, and it can exacerbate dopaminergic neurodegeneration in response to the toxin MPTP. Here we examined the effect of cell type-specific Bmal1 deletion on dopaminergic neuron viability in vivo. We observed that global, postnatal deletion of Bmal1 caused spontaneous loss of tyrosine hydroxylase+ (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc). This was not replicated by light-induced disruption of behavioral circadian rhythms and was not induced by astrocyte- or microglia-specific Bmal1 deletion. However, either pan-neuronal or TH neuron-specific Bmal1 deletion caused cell-autonomous loss of TH+ neurons in the SNpc. Bmal1 deletion did not change the percentage of TH neuron loss after α-synuclein fibril injection, though Bmal1-KO mice had fewer TH neurons at baseline. Transcriptomics analysis revealed dysregulation of pathways involved in oxidative phosphorylation and Parkinson disease. These findings demonstrate a cell-autonomous role for BMAL1 in regulating dopaminergic neuronal survival and may have important implications for neuroprotection in PD.


Assuntos
Relógios Circadianos , Doença de Parkinson , Animais , Humanos , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos/genética , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Knockout , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
3.
Neuron ; 111(15): 2383-2398.e7, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37315555

RESUMO

The circadian clock protein BMAL1 modulates glial activation and amyloid-beta deposition in mice. However, the effects of BMAL1 on other aspects of neurodegenerative pathology are unknown. Here, we show that global post-natal deletion of Bmal1 in mouse tauopathy or alpha-synucleinopathy models unexpectedly suppresses both tau and alpha-synuclein (αSyn) aggregation and related pathology. Astrocyte-specific Bmal1 deletion is sufficient to prevent both αSyn and tau pathology in vivo and induces astrocyte activation and the expression of Bag3, a chaperone critical for macroautophagy. Astrocyte Bmal1 deletion enhances phagocytosis of αSyn and tau in a Bag3-dependent manner, and astrocyte Bag3 overexpression is sufficient to mitigate αSyn spreading in vivo. In humans, BAG3 is increased in patients with AD and is highly expressed in disease-associated astrocytes (DAAs). Our results suggest that early activation of astrocytes via Bmal1 deletion induces Bag3 to protect against tau and αSyn pathologies, providing new insights into astrocyte-specific therapies for neurodegeneration.


Assuntos
Sinucleinopatias , Tauopatias , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Fatores de Transcrição ARNTL/genética , Astrócitos/metabolismo , Sinucleinopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/metabolismo
4.
Elife ; 92020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258449

RESUMO

The circadian clock regulates various aspects of brain health including microglial and astrocyte activation. Here, we report that deletion of the master clock protein BMAL1 in mice robustly increases expression of complement genes, including C4b and C3, in the hippocampus. BMAL1 regulates expression of the transcriptional repressor REV-ERBα, and deletion of REV-ERBα causes increased expression of C4b transcript in neurons and astrocytes as well as C3 protein primarily in astrocytes. REV-ERBα deletion increased microglial phagocytosis of synapses and synapse loss in the CA3 region of the hippocampus. Finally, we observed diurnal variation in the degree of microglial synaptic phagocytosis which was antiphase to REV-ERBα expression. This daily variation in microglial synaptic phagocytosis was abrogated by global REV-ERBα deletion, which caused persistently elevated synaptic phagocytosis. This work uncovers the BMAL1-REV-ERBα axis as a regulator of complement expression and synaptic phagocytosis in the brain, linking circadian proteins to synaptic regulation.


Assuntos
Região CA3 Hipocampal/metabolismo , Ritmo Circadiano , Proteínas do Sistema Complemento/metabolismo , Microglia/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Fagocitose , Sinapses/metabolismo , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Animais , Região CA3 Hipocampal/citologia , Células Cultivadas , Complemento C3/genética , Complemento C3/metabolismo , Complemento C4/genética , Complemento C4/metabolismo , Proteínas do Sistema Complemento/genética , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Transdução de Sinais , Fatores de Tempo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA