Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(34): 22851-22861, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584652

RESUMO

The effect of localized surface plasmon resonance (LSPR) of a system consisting of a highly dipolar merocyanine dye and a silver nanoparticle (NP) was studied experimentally and theoretically. A theoretical model for estimating the fluorescence quantum yield (φfl) using quantum chemical calculations of intramolecular and intermolecular electronic transition rate constants was developed. Calculations show that the main deactivation channels of the lowest excited singlet state of the studied merocyanines are internal conversion (kIC(S1 → S0)) and fluorescence (kr(S1 → S0)). The intersystem-crossing transition has a low probability due to the large energy difference between the singlet and triplet levels. In the presence of plasmonic NPs, the fluorescence quantum yield is increased by a factor of two according to both experiment and computations. The calculated values of φfl, when considering changes in kr(S1 → S0) and the energy-transfer rate constant (ktransfer) from the dye to the NP was also twice as large at distances of 6-8 nm between the NP and the dye molecule. We also found that the LSPR effect can be increased or decreased depending on the value of the dielectric constant (εm) of the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA