Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 61(7): 545-553, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35274528

RESUMO

Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), a Ca2+/CaM-dependent enzyme that phosphorylates and activates multifunctional kinases, including CaMKI, CaMKIV, protein kinase B/Akt, and 5'AMP-activated protein kinase, is involved in various Ca2+-signaling pathways in cells. Recently, we developed an ATP-competitive CaMKK inhibitor, TIM-063 (2-hydroxy-3-nitro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one, Ohtsuka et al. Biochemistry 2020, 59, 1701-1710). To gain mechanistic insights into the interaction of CaMKK with TIM-063, we prepared TIM-063-coupled sepharose (TIM-127-sepharose) for association/dissociation analysis of the enzyme/inhibitor complex. CaMKKα/ß in transfected COS-7 cells and in mouse brain extracts specifically bound to TIM-127-sepharose and dissociated following the addition of TIM-063 in a manner similar to that of recombinant GST-CaMKKα/ß, which could bind to TIM-127-sepharose in a Ca2+/CaM-dependent fashion and dissociate from the sepharose following the addition of TIM-063 in a dose-dependent manner. In contrast to GST-CaMKKα, GST-CaMKKß was able to weakly bind to TIM-127-sepharose in the presence of EGTA, probably due to the partially active conformation of recombinant GST-CaMKKß without Ca2+/CaM-binding. These results suggested that the regulatory domain of CaMKKα prevented the inhibitor from interacting with the catalytic domain as the GST-CaMKKα mutant (residues 126-434) lacking the regulatory domain (residues 438-463) interacted with TIM-127-sepharose regardless of the presence or absence of Ca2+/CaM. Furthermore, CaMKKα bound to TIM-127-sepharose in the presence of Ca2+/CaM completely dissociated from TIM-127-sepharose following the addition of excess EGTA. These results indicated that TIM-063 interacted with and inhibited CaMKK in its active state but not in its autoinhibited state and that this interaction is likely reversible, depending on the concentration of intracellular Ca2+.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Camundongos , Fosforilação , Ligação Proteica , Transdução de Sinais
2.
Biochem Biophys Res Commun ; 587: 160-165, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34875535

RESUMO

Ca2+/calmodulin-dependent protein kinase kinases (CaMKKα and ß) are regulatory kinases for multiple downstream kinases, including CaMKI, CaMKIV, PKB/Akt, and AMP-activated protein kinase (AMPK) through phosphorylation of each activation-loop Thr residue. In this report, we biochemically characterize the oligomeric structure of CaMKK isoforms through a heterologous expression system using COS-7 cells. Oligomerization of CaMKK isoforms was readily observed by treating CaMKK transfected cells with cell membrane permeable crosslinkers. In addition, His-tagged CaMKKα (His-CaMKKα) pulled down with FLAG-tagged CaMKKα (FLAG-CaMKKα) in transfected cells. The oligomerization of CaMKKα was confirmed by the fact that GST-CaMKKα/His-CaMKKα complex from transiently expressed COS-7 cells extracts was purified to near homogeneity by the sequential chromatography using glutathione-sepharose/Ni-sepharose and was observed in a Ca2+/CaM-independent manner by reciprocal pulldown assay, suggesting the direct interaction between monomeric CaMKKα. Furthermore, the His-CaMKKα kinase-dead mutant (D293A) complexed with FLAG-CaMKKα exhibited significant CaMKK activity, indicating the active CaMKKα multimeric complex. Collectively, these results suggest that CaMKKα can self-associate in the cells, constituting a catalytically active oligomer that might be important for the efficient activation of CaMKK-mediated intracellular signaling.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/química , Glutationa Transferase/química , Proteínas Recombinantes de Fusão/química , Animais , Sítios de Ligação , Células COS , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Chlorocebus aethiops , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
3.
Langmuir ; 37(18): 5573-5581, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33871256

RESUMO

The dispersion behavior of DNA duplex-carrying colloidal particles in aqueous high-salt solutions shows extraordinary selectivity against the duplex terminal sequence. We investigated the interparticle force between DNA duplex-carrying polystyrene (dsDNA-PS) microparticles in aqueous salt solutions and examined their behavior in relation to the duplex terminal sequences. Force-distance (F-D) curves for a pair of dsDNA-PS particles were recorded with a dual-beam optical tweezers system with the two optically trapped particles closely approaching each other. Interestingly, only 3-5% of the oligo-DNA strands on the dsDNA-PS particles formed a duplex with complementary DNAs, and the F-D curves showed a distinct specificity to the duplex terminal sequences in the interparticle force at a high-NaCl concentration; a clear attraction peak was observed in F-D curves only when the duplex terminal was a complementary base pair. The attractive strength reached 2.6 ± 0.5 pN at 500 mM NaCl and 4.3 ± 1.0 pN at 750 mM NaCl. By sharp contrast, no significant attraction occurred for the particles with mismatched duplex terminals even at 750 mM NaCl. Similar duplex terminal-specificity in the interparticle force was also confirmed for dsDNA-PS particles in divalent MgCl2 solutions. Considering that the duplex terminal sequences on the dsDNA-PS particles showed only a negligible difference in their surface charges under identical salt conditions, we concluded that the interparticle attraction observed only for the dsDNA-PS particles with complementary duplex terminals is attributable to the salt-facilitated stacking interaction between the paired terminal nucleobases (i.e., blunt-end stacking) on the dsDNA-PS surfaces. Our results thus demonstrate the occurrence of a duplex terminal-specific interparticle force between dsDNA-PS particles under high-salt conditions.


Assuntos
Pinças Ópticas , Poliestirenos , Pareamento de Bases , DNA , Cloreto de Sódio
4.
Biochemistry ; 59(17): 1701-1710, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32298102

RESUMO

Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) activates particular multifunctional kinases, including CaMKI, CaMKIV, and 5'AMP-activated protein kinase (AMPK), resulting in the regulation of various Ca2+-dependent cellular processes, including neuronal, metabolic, and pathophysiological pathways. We developed and characterized a novel pan-CaMKK inhibitor, TIM-063 (2-hydroxy-3-nitro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one) derived from STO-609 (7H-benzimidazo[2,1-a]benz[de]isoquinoline-7-one-3-carboxylic acid), and an inactive analogue (TIM-062) as molecular probes for the analysis of CaMKK-mediated cellular responses. Unlike STO-609, TIM-063 had an inhibitory activity against CaMKK isoforms (CaMKKα and CaMKKß) with a similar potency (Ki = 0.35 µM for CaMKKα, and Ki = 0.2 µM for CaMKKß) in vitro. Two TIM-063 analogues lacking a nitro group (TIM-062) or a hydroxy group (TIM-064) completely impaired CaMKK inhibitory activities, indicating that both substituents are necessary for the CaMKK inhibitory activity of TIM-063. Enzymatic analysis revealed that TIM-063 is an ATP-competitive inhibitor that directly targets the catalytic domain of CaMKK, similar to STO-609. TIM-063 suppressed the ionomycin-induced phosphorylation of exogenously expressed CaMKI, CaMKIV, and endogenous AMPKα in HeLa cells with an IC50 of ∼0.3 µM, and it suppressed CaMKK isoform-mediated CaMKIV phosphorylation in transfected COS-7 cells. Thus, TIM-063, but not the inactive analogue (TIM-062), displayed cell permeability and the ability to inhibit CaMKK activity in cells. Taken together, these results indicate that TIM-063 could be a useful tool for the precise analysis of CaMKK-mediated signaling pathways and may be a promising lead compound for the development of therapeutic agents for the treatment of CaMKK-related diseases.


Assuntos
Benzimidazóis/química , Benzimidazóis/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Naftalimidas/química , Naftalimidas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células COS , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Chlorocebus aethiops , Células HeLa , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia
5.
J Biol Chem ; 294(7): 2386-2396, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30573681

RESUMO

Interleukin 34 (IL-34) constitutes a cytokine that shares a common receptor, colony-stimulating factor-1 receptor (CSF-1R), with CSF-1. We recently identified a novel type of monocytic cell termed follicular dendritic cell-induced monocytic cells (FDMCs), whose differentiation depended on CSF-1R signaling through the IL-34 produced from a follicular dendritic cell line, FL-Y. Here, we report the functional mechanisms of the IL-34-mediated CSF-1R signaling underlying FDMC differentiation. CRIPSR/Cas9-mediated knockout of the Il34 gene confirmed that the ability of FL-Y cells to induce FDMCs completely depends on the IL-34 expressed by FL-Y cells. Transwell culture experiments revealed that FDMC differentiation requires a signal from a membrane-anchored form of IL-34 on the FL-Y cell surface, but not from a secreted form, in a direct interaction between FDMC precursor cells and FL-Y cells. Furthermore, flow cytometric analysis using an anti-IL-34 antibody indicated that IL-34 was also expressed on the FL-Y cell surface. Thus, we explored proteins interacting with IL-34 in FL-Y cells. Mass spectrometry analysis and pulldown assay identified that IL-34 was associated with the molecular chaperone 78-kDa glucose-regulated protein (GRP78) in the plasma membrane fraction of FL-Y cells. Consistent with this finding, GRP78-heterozygous FL-Y cells expressed a lower level of IL-34 protein on their cell surface and exhibited a reduced competency to induce FDMC differentiation compared with the original FL-Y cells. These results indicated a novel GRP78-dependent localization and specific function of IL-34 in FL-Y cells related to monocytic cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Células Dendríticas Foliculares/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico/metabolismo , Interleucinas/biossíntese , Monócitos/metabolismo , Animais , Linhagem Celular , Membrana Celular/genética , Células Dendríticas Foliculares/citologia , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Interleucinas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/citologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-32085894

RESUMO

Ca2+/calmodulin-dependent protein kinase kinase ß (CaMKKß) acts as a regulatory kinase that phosphorylates and activates multiple downstream kinases including CaMKI, CaMKIV, 5'AMP-activated protein kinase (AMPK) and protein kinase B (PKB), resulting in regulation of wide variety of Ca2+-dependent physiological responses under normal and pathological conditions. CaMKKß is regulated by Ca2+/calmodulin-binding, autophosphorylation, and transphosphorylation by multiple protein kinases including cAMP-dependent protein kinase (PKA). In this report, we found that phosphorylation of CaMKKß is dynamically regulated by protein phosphatase/kinase system in HeLa cells. Global phosphoproteomic analysis revealed the constitutive phosphorylation at 8 Ser residues including Ser128, 132, and 136 in the N-terminal regulatory domain of rat CaMKKß in unstimulated HeLa cells as well as inducible phosphorylation of Thr144 in the cells treated with a phosphatase inhibitor, okadaic acid (OA). Thr144 phosphorylation in CaMKKß has shown to be rapidly induced by OA treatment in a time- and dose-dependent manner in transfected HeLa cells, indicating that Thr144 in CaMKKß is maintained unphosphorylated state by protein phosphatase(s). We confirmed that in vitro dephosphorylation of pThr144 in CaMKKß by protein phosphatase 2A and 1. We also found that the pharmacological inhibition of protein phosphatase(s) significantly induces CaMKKß-phosphorylating activity (at Thr144) in HeLa cell lysates as well as in intact cells; however, it was unlikely that this activity was catalyzed by previously identified Thr144-kinases, such as AMPK and PKA. Taken together, these results suggest that the phosphorylation and dephosphorylation of Thr144 in CaMKKß is dynamically regulated by multiple kinases/phosphatases signaling resulting in fine-tuning of the enzymatic property.

7.
Langmuir ; 35(36): 11710-11716, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31407908

RESUMO

The interactions between metal ions and biomolecules are crucial to various bioprocesses. Development of plasmon switching nanodevices that exploit these molecular interactions is of fundamental and technological interest. Here, we show plasmon switching based on rapid aggregation/dispersion of double-stranded DNA-modified gold nanorods (dsDNA-AuNRs) that exhibit colloidal behaviors depending on pairing/unpairing of the terminal bases. The dsDNA-AuNRs bearing a thymine-thymine (T-T) mismatch at the penultimate position undergo spontaneous non-cross-linking aggregation in the presence of Hg2+ due to T-Hg-T base pairing. Inversely, the subsequent addition of cysteine (Cys) gives rise to the removal of Hg2+ from the T-Hg-T base pair to reproduce the T-T mismatch, resulting in stable dispersion of the dsDNA-AuNRs. The chemical-responsive plasmon switch allows for the rapid and repeatable cycles at room temperature. The validity of the present method is further exemplified by developing another plasmon switch fueled by Ag+ and Cys by installing the Ag+-binding DNA sequence in the dsDNA-AuNR.


Assuntos
Pareamento de Bases , DNA/química , Ouro/química , Nanotubos/química , Tamanho da Partícula , Propriedades de Superfície , Timina/química
8.
J Biol Chem ; 292(48): 19804-19813, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28974582

RESUMO

The Ca2+/calmodulin-dependent protein kinase kinase ß (CaMKKß)/5'-AMP-activated protein kinase (AMPK) phosphorylation cascade affects various Ca2+-dependent metabolic pathways and cancer growth. Unlike recombinant CaMKKß that exhibits higher basal activity (autonomous activity), activation of the CaMKKß/AMPK signaling pathway requires increased intracellular Ca2+ concentrations. Moreover, the Ca2+/CaM dependence of CaMKKß appears to arise from multiple phosphorylation events, including autophosphorylation and activities furnished by other protein kinases. However, the effects of proximal downstream kinases on CaMKKß activity have not yet been evaluated. Here, we demonstrate feedback phosphorylation of CaMKKß at multiple residues by CaMKKß-activated AMPK in addition to autophosphorylation in vitro, leading to reduced autonomous, but not Ca2+/CaM-activated, CaMKKß activity. MS analysis and site-directed mutagenesis of AMPK phosphorylation sites in CaMKKß indicated that Thr144 phosphorylation by activated AMPK converts CaMKKß into a Ca2+/CaM-dependent enzyme as shown by completely Ca2+/CaM-dependent CaMKK activity of a phosphomimetic T144E CaMKKß mutant. CaMKKß mutant analysis indicated that the C-terminal domain (residues 471-587), including the autoinhibitory region, plays an important role in stabilizing an inactive conformation in a Thr144 phosphorylation-dependent manner. Furthermore, immunoblot analysis with anti-phospho-Thr144 antibody revealed phosphorylation of Thr144 in CaMKKß in transfected COS-7 cells that was further enhanced by exogenous expression of AMPKα. These results indicate that AMPK-mediated feedback phosphorylation of CaMKKß regulates the CaMKKß/AMPK signaling cascade and may be physiologically important for intracellular maintenance of Ca2+-dependent AMPK activation by CaMKKß.


Assuntos
Adenilato Quinase/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Retroalimentação , Adenilato Quinase/genética , Animais , Células COS , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/química , Catálise , Chlorocebus aethiops , Ativação Enzimática , Mutagênese Sítio-Dirigida , Fosforilação , Ratos , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Treonina/metabolismo
9.
Langmuir ; 34(49): 15078-15083, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30179510

RESUMO

Hydrophobic attraction is often a physical origin of nonspecific and irreversible (uncontrollable) processes observed for colloidal and biological systems, such as aggregation, precipitation, and fouling with biomolecules. On the contrary, blunt-end stacking of complementary DNA duplex chain pairs, which is also mainly driven by hydrophobic interaction, is specific and stable enough to lead to self-assemblies of DNA nanostructures. To understand the reason behind these contradicting phenomena, we measured forces operating between two self-assembled monolayers of duplexed DNA molecules with blunt ends (DNA-SAMs) and analyzed their statistics. We found the high specificity and stability of blunt-end stacking that resulted in the high resemblance between the interaction forces measured on approaching and retracting. The other finding is on the stochastic formation process of blunt-end stacking, which appeared as a significant fluctuation of the interaction forces at separations smaller than 2.5 nm. Based on these results, we discuss the underlying mechanism of the specificity and stability of blunt-end stacking.


Assuntos
DNA/química , Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Microscopia de Força Atômica/métodos , Silício/química , Processos Estocásticos , Tensão Superficial
10.
J Biol Chem ; 291(26): 13802-8, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27151216

RESUMO

Ca(2+)/calmodulin-dependent protein kinase kinase ß (CaMKKß) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKß phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 µm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKß chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKß/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Substituição de Aminoácidos , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Linhagem Celular Tumoral , Ativação Enzimática/fisiologia , Humanos , Mutagênese Sítio-Dirigida , Ratos
11.
Biochem Biophys Res Commun ; 491(4): 980-985, 2017 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-28765046

RESUMO

S100A6 is a Ca2+-signal transducer that interacts with numerous proteins and regulates their biochemical functions. Here we identified a centrosomal protein, FOR20 (FOP-related protein of 20 kDa) as a novel S100A6 target by screening protein microarrays carrying 19,676 recombinant GST-fused human proteins. Binding experiments revealed that S100A6 interacts with the N-terminal region (residues 1-30) of FOR20 in a Ca2+-dependent manner in vitro and in living cells. Several S100 proteins including S100A1, A2, A4, A11, B also exhibited Ca2+-dependent interactions with FOR20 as well as S100A6. We found that two distantly related centrosomal proteins, FOP and OFD1, also possess N-terminal regions with a significant sequence similarity to the putative S100A6-binding site (residues 1-30) in FOR20 and are capable of binding to S100A6 in a Ca2+-dependent manner. Taken together, these results may indicate that S100A6 interacts with FOR20 and related centrosomal proteins through a conserved N-terminal domain, suggesting a novel Ca2+-dependent regulation of centrosomal function.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Animais , Células COS , Células Cultivadas , Centrossomo/química , Centrossomo/metabolismo , Chlorocebus aethiops , Células HeLa , Humanos , Análise Serial de Proteínas , Ligação Proteica , Proteína A6 Ligante de Cálcio S100 , Especificidade por Substrato
12.
Biochem Biophys Res Commun ; 485(2): 261-266, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235482

RESUMO

Activation-induced cytidine deaminase (AID) is essential for diversification of the Ig variable region (IgV). AID is excluded from the nucleus, where it normally functions. However, the molecular mechanisms responsible for regulating AID localization remain to be elucidated. The SR-protein splicing factor SRSF1 is a nucleocytoplasmic shuttling protein, a splicing isoform of which called SRSF1-3, has previously been shown to contribute to IgV diversification in chicken DT40 cells. In this study, we examined whether SRSF1-3 functions in IgV diversification by promoting nuclear localization of AID. AID expressed alone was localized predominantly in the cytoplasm. In contrast, co-expression of AID with SRSF1-3 led to the nuclear accumulation of both AID and SRSF1-3 and the formation of a protein complex that contained them both, although SRSF1-3 was dispensable for nuclear import of AID. Expression of either SRSF1-3 or a C-terminally-truncated AID mutant increased IgV diversification in DT40 cells. However, overexpression of exogenous SRSF1-3 was unable to further enhance IgV diversification in DT40 cells expressing the truncated AID mutant, although SRSF1-3 was able to form a protein complex with the AID mutant. These results suggest that SRSF1-3 promotes nuclear localization of AID probably by forming a nuclear protein complex, which might stabilize nuclear AID and induce IgV diversification in an AID C-terminus-dependent manner.


Assuntos
Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas/genética , Citidina Desaminase/metabolismo , Região Variável de Imunoglobulina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Hipermutação Somática de Imunoglobulina , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Galinhas/metabolismo , Conversão Gênica
13.
Small ; 13(44)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29024393

RESUMO

Directed assemblies of anisotropic metal nanoparticles exhibit attractive physical and chemical properties. However, an effective methodology to prepare differently directed assemblies from the same anisotropic nanoparticles is not yet available. Gold nanorods (AuNRs) region-selectively modified with different DNA strands can form side-by-side (SBS) and end-to-end (ETE) assemblies in a non-crosslinking manner. When the complementary DNA is hybridized to the surface-bound DNA, stacking interaction between the blunt ends takes place in the designated regions. Such AuNRs assemble into highly ordered structures, assisted by capillary forces emerging on the substrate surface. Moreover, insertion of a mercury(II)-mediated thymine-thymine base pair into the periphery of the DNA layer allows selective formation of the SBS or ETE assemblies from the strictly identical AuNRs with or without mercury(II).


Assuntos
Pareamento de Bases , DNA/química , Ouro/química , Nanotubos/química , Mercúrio/química , Nanotubos/ultraestrutura
14.
Bioconjug Chem ; 28(1): 270-277, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27509030

RESUMO

Gold nanoparticles densely modified with single-stranded DNA (ssDNA-AuNPs) form aggregates with cross-linker ssDNAs via duplex formation. Alternatively, the ssDNA-AuNPs are spontaneously aggregated at high ionic strength in a non-cross-linking manner when complementary ssDNAs are added to form fully matched duplexes. Both aggregation modes are accompanied by a red-to-purple color change, which has been exploited in various bioassays. The current study compares the rapidity of color change between the cross-linking and non-cross-linking aggregation modes under identical conditions. When a small number of cross-linker/complementary DNAs are provided, the cross-linking mode exhibited more rapid color change than the non-cross-linking mode. Conversely, with a large number of the DNAs, the non-cross-linking aggregation occurred more rapidly than the cross-linking counterpart. This finding allows one to select a more appropriate aggregation mode for application of ssDNA-AuNPs to colorimetric assays under given conditions.


Assuntos
Cor , Ouro/química , Nanopartículas Metálicas/química , Soluções
15.
Langmuir ; 32(49): 13296-13304, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951695

RESUMO

Double-stranded DNA-grafted nanoparticles (dsDNA-NPs) exhibit a unique dispersion behavior under high-salt conditions depending on the pairing status of their outermost base pairs (pairing or unpairing). The dsDNA-NPs having complementary (i.e., pairing) outermost base pairs spontaneously aggregate under high-salt conditions, but not when their outermost base pairs are mismatched (unpairing). In this study, we used colloidal probe atomic force microscopy to examine how the outermost base pairs affect the interaction between the dsDNA-grafted layers (dsDNA layers). To precisely assess the subtle structural differences in the dsDNA layers, we developed a method for the formation of a homogenous dsDNA layer on gold surfaces using hairpin-shaped DNAs. Homogenous dsDNA layers having complementary (G-C) or mismatched (C-C) outermost base pairs were grafted onto the surfaces of colloidal probes and gold substrates. Force-distance curves measured in an aqueous medium under high-salt conditions revealed that the surface forces between the dsDNA layers were bilateral in nature and were governed by the outermost base pairs. Between complementary outermost dsDNA layers, the surface force changed from repulsive to attractive with an increase in the NaCl concentration (10-1000 mM). The attraction observed under high-salt conditions was attributed to the site-specific interaction proceeded only between complementary dsDNA terminals, the so-called blunt-end stacking. In fact, between mismatched outermost dsDNA layers, the repulsive force was mostly dominant within the same NaCl concentration range. Our results clearly revealed that the pairing status of the outermost base pairs has significant implications for the surface forces between dsDNA layers, leading to the unique dispersion behavior of dsDNA-NPs.


Assuntos
Pareamento de Bases , Coloides/química , DNA/química , Ouro , Microscopia de Força Atômica
16.
Biochemistry ; 54(25): 3969-77, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26050738

RESUMO

To assess the isoform specificity of the Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK)-mediated signaling pathway using a CaMKK inhibitor (STO-609) in living cells, we have established A549 cell lines expressing STO-609-resistant mutants of CaMKK isoforms. Following serial mutagenesis studies, we have succeeded in obtaining an STO-609-resistant CaMKKα mutant (Ala292Thr/Leu233Phe) and a CaMKKß mutant (Ala328Thr/Val269Phe), which showed sensitivity to STO-609 that was 2-3 orders of magnitude lower without an appreciable effect on kinase activity or CaM requirement. These results are consistent with the results obtained for CaMKK activities in the extracts of A549 cells stably expressing the mutants of CaMKK isoforms. Ionomycin-induced 5'-AMP-activated protein kinase (AMPK) phosphorylation at Thr172 in A549 cells expressing either the wild-type or the STO-609-resistant mutant of CaMKKα was completely suppressed by STO-609 treatment but resistant to the inhibitor in the presence of the CaMKKß mutant (Ala328Thr/Val269Phe). This result strongly suggested that CaMKKß is responsible for ionomycin-induced AMPK activation, which supported previous reports. In contrast, ionomycin-induced CaMKIV phosphorylation at Thr196 was resistant to STO-609 treatment in A549 cells expressing STO-609-resistant mutants of both CaMKK isoforms, indicating that both CaMKK isoforms are capable of phosphorylating and activating CaMKIV in living cells. Considering these results together, STO-609-resistant CaMKK mutants developed in this study may be useful for distinguishing CaMKK isoform-mediated signaling pathways in combination with the use of an inhibitor compound.


Assuntos
Benzimidazóis/química , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/química , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Células/enzimologia , Naftalimidas/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Sequência de Aminoácidos , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Células/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Fosforilação , Ratos
17.
Small ; 11(26): 3153-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25739374

RESUMO

Self-assembled structures of metallic nanoparticles with dynamically changeable interparticle distance hold promise for the regulation of collective physical properties. This paper describes gold nanoparticle dimers and trimers that exhibit spontaneous and reversible changes in interparticle distance. To exploit this property, a gold nanoparticle is modified with precisely one long DNA strand and approximately five short DNA strands. The long DNA serves to align the nanoparticles on a template DNA via hybridization, while the short DNAs function to induce the interparticle distance changes. The obtained dimer and trimer are characterized with gel electrophoresis, dynamic light scattering measurements, and transmission electron microscopy (TEM). When the complementary short DNA is added to form the fully matched duplexes on the particle surface in the presence of MgCl2 , spontaneous reduction of the interparticle distance is observed with TEM and cryo-electron microscopy. By contrast, when the terminal-mismatched DNA is added, no structural change occurs under the same conditions. Therefore, the single base pairing/unpairing at the outermost surface of the nanoparticle impacts the interparticle distance. This unique feature could be applied to the regulation of structures and properties of various DNA-functionalized nanoparticle assemblies.


Assuntos
Pareamento de Bases , Cristalização/métodos , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , DNA/ultraestrutura , Dimerização , Teste de Materiais , Conformação Molecular , Nanoconjugados/química , Nanoconjugados/ultraestrutura , Tamanho da Partícula
18.
Proc Natl Acad Sci U S A ; 109(4): 1216-21, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22232677

RESUMO

Somatic hypermutation (SHM) of Ig variable region (IgV) genes requires both IgV transcription and the enzyme activation-induced cytidine deaminase (AID). Identification of a cofactor responsible for the fact that IgV genes are much more sensitive to AID-induced mutagenesis than other genes is a key question in immunology. Here, we describe an essential role for a splice isoform of the prototypical serine/arginine-rich (SR) protein SRSF1, termed SRSF1-3, in AID-induced SHM in a DT40 chicken B-cell line. Unexpectedly, we found that SHM does not occur in a DT40 line lacking SRSF1-3 (DT40-ASF), although it is readily detectable in parental DT40 cells. Strikingly, overexpression of AID in DT40-ASF cells led to a large increase in nonspecific (off-target) mutations. In contrast, introduction of SRSF1-3, but not SRSF1, into these cells specifically restored SHM without increasing off-target mutations. Furthermore, we found that SRSF1-3 binds preferentially to the IgV gene and inhibits processing of the Ig transcript, providing a mechanism by which SRSF1-3 makes the IgV gene available for AID-dependent SHM. SRSF1 not only acts as an essential splicing factor but also regulates diverse aspects of mRNA metabolism and maintains genome stability. Our findings, thus, define an unexpected and important role for SRSF1, particularly for its splice variant, in enabling AID to function specifically on its natural substrate during SHM.


Assuntos
Citidina Desaminase/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Hipermutação Somática de Imunoglobulina/imunologia , Animais , Linfócitos B , Western Blotting , Galinhas , Imunoprecipitação da Cromatina , Primers do DNA/genética , DNA Complementar/biossíntese , Camundongos , Células NIH 3T3 , Proteínas Nucleares/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA/isolamento & purificação , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Processamento de Serina-Arginina
19.
Anal Chem ; 86(22): 11425-33, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25358129

RESUMO

Diblock copolymers composed of allele-specific oligodeoxyribonucleotide (ODN) and poly(ethylene glycol) (PEG) are used as an affinity probe of free-solution capillary electrophoresis to quantitatively detect single-base substitutions in genetic samples. During electrophoresis, the probe binds strongly to a wild-type single-stranded DNA analyte (WT) through hybridization, while it binds weakly to its single-base-mutated DNA analyte (MT) due to a mismatch. Complex formation with the probe augments the hydrodynamic friction of either analyte, thereby retarding its migration. The difference in affinity strength leads to separation of the WT, MT, and contaminants, including the PCR primers used for sample preparation. The optimal sequence of the probe's ODN segment is rationally determined in such a way that the binding constant between the ODN segment and MT at the capillary temperature is on the order of 10(6) M(-1). The validity of this guideline is verified using various chemically synthesized DNA analytes, as well as those derived from a bacterial genome. The peak area ratio of MT agrees well with its feed ratio, suggesting the prospective use of the present method in SNP allele frequency estimation.


Assuntos
DNA/análise , Oligodesoxirribonucleotídeos/química , Polietilenoglicóis/química , Polimorfismo de Nucleotídeo Único/genética , Termodinâmica , DNA/genética , Eletroforese Capilar
20.
Chemistry ; 20(52): 17420-5, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25349129

RESUMO

A single-nucleotide polymorphism (SNP) detection method was developed by combining single-base primer extension and salt-induced aggregation of gold nanoparticles densely functionalized with double-stranded DNA (dsDNA-AuNP). The dsDNA-AuNPs undergo rapid aggregation in a medium of high ionic strength, whereas particles having a single-base protrusion at the outermost surface disperse stably, allowing detection of a single-base difference in length by color changes. When SNP typing primers are used as analytes to hybridize to the single-stranded DNA on the AuNP surface, the resulting dsDNA-AuNP works as a visual indicator of single-base extension. A set of four extension reaction mixtures is prepared using each of ddNTPs and subsequently subjected to the aggregation assay. Three mixtures involving ddNTP that is not complementary to the SNP site in the target produce the aggregates that exhibit a purple color. In contrast, one mixture with the complementary ddNTP generates the single-base protrusion and appears red. This method could potentially be used in clinical diagnostics for personalized medicine.


Assuntos
DNA de Cadeia Simples/química , DNA/química , DNA/genética , Ouro/química , Nanopartículas Metálicas/química , Sequência de Bases , Técnicas Biossensoriais , Colorimetria/métodos , Técnicas e Procedimentos Diagnósticos , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA