Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Biol Chem ; 299(4): 104600, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36906145

RESUMO

Teleost oocytes are surrounded by a structure called chorion or egg envelopes, which is composed of zona pellucida (ZP) proteins. As a result of the gene duplication in teleost, the expression site of the zp genes, coding the major component protein of egg envelopes, changed from the ovary to the maternal liver. In Euteleostei, there are three liver-expressed zp genes, named choriogenin (chg) h, chg hm, and chg l, and the composition of the egg envelope is mostly made up of these Chgs. In addition, ovary-expressed zp genes are also conserved in the medaka genomes, and their proteins have also been found to be minor components of the egg envelopes. However, the specific role of liver-expressed versus ovary-expressed zp genes was unclear. In the present study, we showed that ovary-synthesized ZP proteins first form the base layer of the egg envelope and then Chgs polymerize inwardly to thicken the egg envelope. To analyze the effects of dysfunction of the chg gene, we generated some chg knockout medaka. All knockout females failed to produce normally fertilized eggs by the natural spawning. The egg envelopes lacking Chgs were significantly thinner, but layers formed by ZP proteins synthesized in the ovary were found in the thin egg envelope of knockout as well as wildtype eggs. These results suggest that the ovary-expressed zp gene is well conserved in all teleosts, including those species in which liver-derived ZP proteins are the major component, because it is essential for the initiation of egg envelope formation.


Assuntos
Proteínas de Peixes , Fígado , Oryzias , Ovário , Glicoproteínas da Zona Pelúcida , Animais , Feminino , Sequência de Aminoácidos , Fígado/metabolismo , Oryzias/genética , Oryzias/metabolismo , Ovário/anatomia & histologia , Ovário/metabolismo , Zona Pelúcida/química , Zona Pelúcida/metabolismo , Glicoproteínas da Zona Pelúcida/genética , Glicoproteínas da Zona Pelúcida/metabolismo , Técnicas de Inativação de Genes , Expressão Gênica , Óvulo/citologia , Óvulo/metabolismo
2.
Dev Growth Differ ; 64(9): 558-565, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36376176

RESUMO

Cartilaginous fishes have various unique physiological features such as a cartilaginous skeleton and a urea-based osmoregulation strategy for adaptation to their marine environment. Also, because they are a sister group of bony vertebrates, understanding their unique features is important from an evolutionary perspective. However, genetic engineering based on gene functions as well as cellular behavior has not been effectively utilized in cartilaginous fishes. This is partly because their reproductive strategy involves internal fertilization, which results in difficulty in microinjection into fertilized eggs at the early developmental stage. Here, to identify efficient gene transfer methods in cartilaginous fishes, we examined the effects of various methods both in vitro and in vivo using the cloudy catshark, a candidate model cartilaginous fish species. In all methods, green fluorescent protein (GFP) expression was used to evaluate exogenous gene transfer. First, we examined gene transfer into primary cultured cells from cloudy catshark embryos by lipofection, polyethylenimine (PEI) transfection, adenovirus infection, baculovirus infection, and electroporation. Among the methods tested, lipofection, electroporation, and baculovirus infection enabled the successful transfer of exogenous genes into primary cultured cells. We then attempted in vivo transfection into cloudy catshark embryos by electroporation and baculovirus infection. Although baculovirus-injected groups did not show GFP fluorescence, electroporation successfully introduced GFP into muscle cells. Furthermore, we succeeded in GFP transfer into adult tissues by electroporation. The in vitro and in vivo gene transfer methods that worked in this study may open ways for genetic manipulation including knockout experiments and cellular lineage analysis in cartilaginous fishes.


Assuntos
Peixes , Vertebrados , Animais , Eletroporação , Proteínas de Fluorescência Verde/genética , Evolução Biológica
3.
Biosci Biotechnol Biochem ; 85(11): 2295-2299, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34468713

RESUMO

Human susceptibility to NaCl varies depending on temperature and pH, the molecular mechanisms of which remain unclear. The voltage-dependent chloride channel, transmembrane channel-like 4 (TMC4), is activated at approximately 40 °C and is suppressed at pH 5.5. As these are similar in character to human sensory evaluations, human TMC4 may be involved in human salt taste reception.


Assuntos
Temperatura
4.
Gen Comp Endocrinol ; 285: 113272, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525376

RESUMO

It is widely known that reproduction in vertebrates is regulated by the hypothalamus-pituitary-gonadal (HPG) axis. Although the mechanism of the HPG axis has been well documented in mammals, it cannot be always applied to that in non-mammalian species, which is a great disadvantage in understanding reproduction of vertebrates in general. Recently, transgenic and genome editing tools have rapidly been developed in small teleosts, and thus these species are expected to be useful for the understanding of general mechanism of reproduction in vertebrates. One of the major sex steroid hormones in female vertebrates 17ß-Estradiol (E2) plays crucial roles in the formation of sexual dimorphism and the HPG axis regulation. In spite of the importance of E2 in reproductive regulation, only a few studies have analyzed blood E2 levels in small teleosts that are easily amenable to genetic manipulation. In the present study, we analyzed blood E2 concentration in medaka and demonstrated that female medaka show diurnal changes in blood E2 concentration. We then examined the best method for manipulating the circulating E2. First, we found that ovariectomy (OVX) drastically removes endogenous E2 in a day in female medaka. We examined different methods for E2 administration and revealed that feeding administration of E2-containing food is the most convenient and physiological method for mimicking the diurnal E2 changes of female medaka. On the other hand, the medaka exposed to E2 containing water showed high blood E2 concentrations, which exceeds those of environmental water, suggesting that E2 may cause bioconcentration.


Assuntos
Estradiol/sangue , Oryzias/sangue , Testes Sorológicos/métodos , Animais , Estradiol/administração & dosagem , Feminino , Masculino , Oryzias/genética , Ovariectomia , Fatores de Tempo
5.
Gen Comp Endocrinol ; 284: 113075, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30500374

RESUMO

Reproduction is regulated by the hypothalamic-pituitary-gonadal (HPG) axis in vertebrates. In addition to wealth of knowledge in mammals, recent studies in non-mammalian species, especially teleosts, have provided evidence that some of the components in the HPG axis are conserved in bony vertebrates. On the other hand, from the comparisons of the recent accumulating knowledge between mammals and teleosts, unique characteristics of the regulatory system in each group have been unveiled. A hypophysiotropic neurotransmitter/hormone, gonadotropin releasing hormone (GnRH), pituitary gonadotropins, follicle stimulating hormone (FSH), and luteinizing hormone (LH) were proven to be common important elements of the HPG axis in teleosts and mammals, although the roles of each vary. Conversely, there are some modulators of GnRH or gonadotropins that are not common to all vertebrates. In this review, I will introduce the mechanism for HPG axis regulation in mammals and teleosts, and describe their evolution from a hypothetical common ancestor.


Assuntos
Evolução Biológica , Gônadas/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Vertebrados/fisiologia , Animais , Filogenia , Reprodução/fisiologia
7.
iScience ; 27(2): 108971, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38333699

RESUMO

In mammals, kisspeptin (Kiss1) neurons are generally considered as a sex steroid-dependent key regulator of hypothalamic-pituitary-gonadal (HPG) axis. In contrast, previous studies in non-mammalian species, especially in teleosts, propose that Kiss1 is not directly involved in the HPG axis regulation, which suggests some sex-steroid-dependent functions of kisspeptin(s) other than the HPG axis regulation in non-mammals. Here, we used knockout (KO) medaka of kisspeptin receptor-coding genes (gpr54-1 and gpr54-2) and examined possible roles of kisspeptin in the regulation of sexual behaviors. We found that the KO pairs of gpr54-1, but not gpr54-2, spawned fewer eggs and exhibited delayed spawning than wild type pairs. Detailed behavior analysis suggested that the KO females are responsible for the delayed spawning and that the KO males showed hyper-motivation for courtship. Taken together, the present finding suggests that one of the reproductive-state-dependent functions of the Kiss1 may be the control of successful sexual behaviors.

8.
Mol Cell Endocrinol ; 580: 112101, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37923055

RESUMO

Terrestrial vertebrates have a population of androgen-dependent vasotocin (VT)-expressing neurons in the extended amygdala that are more abundant in males and mediate male-typical social behaviors, including aggression. Teleosts lack these neurons but instead have novel male-specific VT-expressing neurons in the tuberal hypothalamus. Here we found in medaka that vt expression in these neurons is dependent on post-pubertal gonadal androgens and that androgens can act on these neurons to directly stimulate vt transcription via the androgen receptor subtype Ara. Furthermore, administration of exogenous VT induced aggression in females and alterations in the androgen milieu led to correlated changes in the levels of tuberal hypothalamic vt expression and aggression in both sexes. However, genetic ablation of vt failed to prevent androgen-induced aggression in females. Collectively, our results demonstrate a marked androgen dependence of male-specific vt expression in the teleost tuberal hypothalamus, although its relevance to male-typical aggression needs to be further validated.


Assuntos
Agressão , Oryzias , Animais , Feminino , Masculino , Agressão/fisiologia , Androgênios/farmacologia , Androgênios/metabolismo , Comportamento Sexual Animal/fisiologia , Vasotocina/metabolismo , Oryzias/metabolismo , Hipotálamo/metabolismo
9.
Nat Commun ; 15(1): 5342, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937445

RESUMO

In vertebrates, folliculogenesis and ovulation are regulated by two distinct pituitary gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Currently, there is an intriguing consensus that a single hypothalamic neurohormone, gonadotropin-releasing hormone (GnRH), regulates the secretion of both FSH and LH, although the required timing and functions of FSH and LH are different. However, recent studies in many non-mammalian vertebrates indicated that GnRH is dispensable for FSH function. Here, by using medaka as a model teleost, we successfully identify cholecystokinin as the other gonadotropin regulator, FSH-releasing hormone (FSH-RH). Our histological and in vitro analyses demonstrate that hypothalamic cholecystokinin-expressing neurons directly affect FSH cells through the cholecystokinin receptor, Cck2rb, thereby increasing the expression and release of FSH. Remarkably, the knockout of this pathway minimizes FSH expression and results in a failure of folliculogenesis. Here, we propose the existence of the "dual GnRH model" in vertebrates that utilize both FSH-RH and LH-RH.


Assuntos
Hormônio Foliculoestimulante , Hormônio Liberador de Gonadotropina , Hipotálamo , Oryzias , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/genética , Feminino , Oryzias/metabolismo , Oryzias/genética , Hipotálamo/metabolismo , Neurônios/metabolismo , Hormônio Luteinizante/metabolismo , Folículo Ovariano/metabolismo , Ovulação/genética
10.
iScience ; 27(3): 109304, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38464591

RESUMO

Expressed subtype of paralogous genes in functionally homologous cells sometimes show differences across species, the reasons for which have not been explained. The present study examined hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons in vertebrates to investigate this mechanism. These neurons express either gnrh1 or gnrh3 paralogs, depending on the species, and apparent switching of the expressed paralogs in them occurred at least four times in vertebrate evolution. First, we found redundant expression of gnrh1 and gnrh3 in a single neuron in piranha and hypothesized that it may represent an ancestral GnRH system. Moreover, the gnrh1/gnrh3 enhancer of piranha induced reporter RFP/GFP co-expression in a single hypophysiotropic GnRH neuron in both zebrafish and medaka, whose GnRH neurons only express either gnrh3 or gnrh1. Thus, we propose that redundant expression of gnrh1/3 of relatively recent common ancestors may be the key to apparent switching of the paralog usage among present-day species.

11.
Adv Exp Med Biol ; 784: 9-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23550000

RESUMO

The kisspeptin system is considered to be essential for successful mammalian reproduction. In addition to the Kiss1 peptide, Kiss2, the product of kiss2 (the kiss1 paralogue), has also been shown to activate kisspeptin receptor signaling pathways in nonmammalian species. Furthermore, in nonmammalian species, there are two subtypes of receptors, Gpr54-1 (known as GPR54 or Kiss1R in mammals) and Gpr54-2. Although complete understanding of the two kisspeptin-two kisspeptin receptor systems in vertebrates is not so simple, a careful examination of the phylogeny of their genes may provide insights into the functional generality and differences among the kisspeptin systems in different animal phyla. In this chapter, we first discuss the structure of kisspeptin ligands, Kiss1 and Kiss2, and their characteristics as physiologically active peptides. Then, we discuss the evolutionary traits of kiss1 and kiss2 genes and their receptor genes, gpr54-1 and gpr54-2. It appears that each animal species has selected either kiss1 or kiss2 rather randomly, leading us to propose that some of the important characteristics of kisspeptin neurons, such as steroid sensitivity and the anatomical relationship with the hypophysiotropic GnRH1 neurons, may be the keys to understanding the general functions of different kisspeptin neuronal populations throughout vertebrates. Species differences in kiss1/kiss2 may also provide insights into the evolutionary mechanisms of paralogous gene-expressing neuronal systems. Finally, because kisspeptins belong to one of the members of the RFamide peptide families, we discuss the functional divergence of kisspeptins from the other RFamide peptides, which may be explained from phylogenetic viewpoints.


Assuntos
Evolução Molecular , Kisspeptinas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Filogenia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Hormônio Liberador de Gonadotropina/química , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Neurônios/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores de Kisspeptina-1 , Relação Estrutura-Atividade
12.
Proc Biol Sci ; 279(1749): 5014-23, 2012 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-23075834

RESUMO

To dissect the molecular and cellular basis of sexual differentiation of the teleost brain, which maintains marked sexual plasticity throughout life, we examined sex differences in neural expression of all subtypes of nuclear oestrogen and androgen receptors (ER and AR) in medaka. All receptors were differentially expressed between the sexes in specific nuclei in the forebrain. The most pronounced sex differences were found in several nuclei in the ventral telencephalic and preoptic areas, where ER and AR expression were prominent in females but almost completely absent in males, indicating that these nuclei represent female-specific target sites for both oestrogen and androgen in the brain. Subsequent analyses revealed that the female-specific expression of ER and AR is not under the direct control of sex-linked genes but is instead regulated positively by oestrogen and negatively by androgen in a transient and reversible manner. Taken together, the present study demonstrates that sex-specific target sites for both oestrogen and androgen occur in the brain as a result of the activational effects of gonadal steroids. The consequent sex-specific but reversible steroid sensitivity of the adult brain probably contributes substantially to the process of sexual differentiation and the persistent sexual plasticity of the teleost brain.


Assuntos
Encéfalo/metabolismo , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Oryzias/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Androgênios/metabolismo , Animais , Estrogênios/metabolismo , Feminino , Proteínas de Peixes/genética , Masculino , Receptores Androgênicos/genética , Receptores de Estrogênio/genética , Caracteres Sexuais , Esteroides/metabolismo
13.
Gen Comp Endocrinol ; 175(3): 432-42, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22166815

RESUMO

kisspeptins that are encoded by kiss1 gene are now considered the key regulator of reproduction from a number of studies in mammals. In most vertebrates, a paralogue of kiss1, called kiss2, is also present, and the functional significance of kisspeptins is not known precisely. In the present study, we have cloned kiss2 from a perciform teleost, the red seabream Pagrus major. The amino acid sequence deduced from the red seabream kiss2 contained a highly conserved 10-amino-acid residue, Kiss2(10) or kp-10. A kiss1-like transcript was also identified, but it appears to be non-functional due to the presence of a "premature" stop codon. Neurons that express kiss2 mRNA were distributed in the dorsal (NRLd) and ventral (NRLv) parts of nucleus recessi lateralis in the hypothalamus. In some fish a few kiss2-expressing neurons were detected in the preoptic area and nucleus ventralis tuberis. The number of kiss2-expressing neurons in the NRLd was larger during the first spawning season in both males and females compared with fish in the post-spawning periods. In males the number of kiss2 neurons in the NRLd of maturing fish was also larger than those in the post-spawning periods. In males the number of kiss2 neurons in the NRLv showed a similar pattern of changes to that of NRLd, while significant changes were not detected for females. The numbers of gonadotropin-releasing hormone 1 (GnRH1)-immunoreactive neurons in the preoptic area showed a similar pattern of change as those of kiss2 cells of the NRLd in both males and females (and also the NRLv in males). These results are in good agreement with the hypothesis that kiss2 neurons are involved in pubertal processes via regulatory influences on GnRH1 neurons in red seabream.


Assuntos
Encéfalo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Kisspeptinas/fisiologia , Neurônios/fisiologia , Dourada/fisiologia , Maturidade Sexual/fisiologia , Envelhecimento/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/citologia , Contagem de Células , Feminino , Hormônio Liberador de Gonadotropina/fisiologia , Hipotálamo/fisiologia , Kisspeptinas/análise , Kisspeptinas/genética , Masculino , Dados de Sequência Molecular , Neurônios/citologia , Área Pré-Óptica/fisiologia
14.
Zoological Lett ; 8(1): 10, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879745

RESUMO

Generally, successful testis transplantation has been considered to require immune suppression in the recipient to avoid rejection of the transplanted tissue. In the present study, we demonstrate in medaka that allogeneic adult testicular tissue will engraft in adult recipients immediately after partial castration without the use of immunosuppressive drugs. The allografted testes are retained in the recipient's body for at least 3 months and are able to produce viable sperm that yield offspring after natural mating. Some recipients showed a high frequency (over 60%) of offspring derived from spermatozoa produced by the transplanted testicular tissue. Histological analyses showed that allografted testicular tissues included both germ cells and somatic cells that had become established within an immunocompetent recipient testis. The relative simplicity of this testis transplantation approach will benefit investigations of the basic processes of reproductive immunology and will improve the technique of gonadal tissue transplantation.

15.
Nat Commun ; 13(1): 2928, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624091

RESUMO

Animals navigate toward favorable locations using various environmental cues. However, the mechanism of how the goal information is encoded and decoded to generate migration toward the appropriate direction has not been clarified. Here, we describe the mechanism of migration towards a learned concentration of NaCl in Caenorhabditis elegans. In the salt-sensing neuron ASER, the difference between the experienced and currently perceived NaCl concentration is encoded as phosphorylation at Ser65 of UNC-64/Syntaxin 1 A through the protein kinase C(PKC-1) signaling pathway. The phosphorylation affects basal glutamate transmission from ASER, inducing the reversal of the postsynaptic response of reorientation-initiating neurons (i.e., from inhibitory to excitatory), guiding the animals toward the experienced concentration. This process, the decoding of the context, is achieved through the differential sensitivity of postsynaptic excitatory and inhibitory receptors. Our results reveal the mechanism of migration based on the synaptic plasticity that conceptually differs from the classical ones.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quimiotaxia/fisiologia , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta , Sintaxina 1/metabolismo
16.
J Neuroendocrinol ; 34(4): e13101, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35132714

RESUMO

The reproductive function of vertebrates is regulated by the hypothalamic-pituitary-gonadal axis. In sexually mature females, gonadotropin-releasing hormone (GnRH) neurons in the preoptic area (POA) are assumed to be responsible for a cyclic large increase in GnRH release, the GnRH surge, triggering a luteinizing hormone (LH) surge, which leads to ovulation. Precise temporal regulation of the preovulatory GnRH/LH surge is important for successful reproduction because ovulation should occur after follicular development. The time course of the circulating level of estrogen is correlated with the ovulatory cycle throughout vertebrates. However, the neural mechanisms underlying estrogen-induced preovulatory GnRH surge after folliculogenesis still remain unclear, especially in non-mammals. Here, we used a versatile non-mammalian model medaka for the analysis of the involvement of estrogen in the regulation of POA-GnRH (GnRH1) neurons. Electrophysiological analysis using a whole brain-pituitary in vitro preparation, which maintains the hypophysiotropic function of GnRH1 neurons intact, revealed that 17ß-estradiol (E2 ) administration recovers the ovariectomy-induced lowered GnRH1 neuronal activity in the evening, indicating the importance of E2 for upregulation of GnRH1 neuronal activity. The importance of E2 was also confirmed by the fact that GnRH1 neuronal activity was low in short-day photoperiod-conditioned females (low E2 model). However, E2 failed to upregulate the firing activity of GnRH1 neurons in the morning, suggesting the involvement of additional time-of-day signal(s) for triggering GnRH/LH surges at an appropriate timing. We also provide morphological evidence for the localization of estrogen receptor subtypes in GnRH1 neurons. In conclusion, we propose a working hypothesis in which both estrogenic and time-of-day signals act in concert to timely upregulate the firing activity of GnRH1 neurons that trigger the GnRH surge at an appropriate timing in a female-specific manner. This neuroendocrinological mechanism is suggested to be responsible for the generation of ovulatory cycles in female teleosts in general.


Assuntos
Hormônio Liberador de Gonadotropina , Oryzias , Animais , Estrogênios , Feminino , Gonadotropinas , Hormônio Luteinizante , Neurônios/fisiologia , Hormônios Liberadores de Hormônios Hipofisários
17.
Endocrinology ; 163(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34962983

RESUMO

Animals properly perform sexual behaviors by using multiple sensory cues. However, neural mechanisms integrating multiple sensory cues and regulating motivation for sexual behaviors remain unclear. Here, we focused on peptidergic neurons, terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which receive inputs from various sensory systems and co-express neuropeptide FF (NPFF) in addition to GnRH. Our behavioral analyses using knockout medaka of GnRH (gnrh3) and/or NPFF (npff) demonstrated that some sexual behavioral repertoires were delayed, not disrupted, in gnrh3 and npff single knockout males, while the double knockout appeared to alleviate the significant defects that were observed in single knockouts. We also found anatomical evidence to show that both neuropeptides modulate the sexual behavior-controlling brain areas. Furthermore, we demonstrated that NPFF activates neurons in the preoptic area via indirect pathway, which is considered to induce the increase in motivation for male sexual behaviors. Considering these results, we propose a novel mechanism by which co-existing peptides of the TN-GnRH neurons, NPFF, and GnRH3 coordinately modulate certain neuronal circuit for the control of behavioral motivation. Our results may go a long way toward understanding the functional significance of peptidergic neuromodulation in response to sensory information from the external environments.


Assuntos
Hormônio Liberador de Gonadotropina/fisiologia , Oligopeptídeos/fisiologia , Oryzias , Ácido Pirrolidonocarboxílico/análogos & derivados , Comportamento Sexual Animal/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Química Encefálica , Feminino , Técnicas de Inativação de Genes , Hormônio Liberador de Gonadotropina/análise , Hormônio Liberador de Gonadotropina/genética , Masculino , Neurônios/química , Neurônios/fisiologia , Oligopeptídeos/análise , Oligopeptídeos/genética , Filogenia , Ácido Pirrolidonocarboxílico/análise , Alinhamento de Sequência
18.
Invest Ophthalmol Vis Sci ; 63(11): 21, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36301532

RESUMO

Purpose: Ablation of short single cones (SSCs) expressing short-wavelength-sensitive opsin (SWS1) is well analyzed in the field of regenerative retinal cells. In contrast with ablation studies, the phenomena caused by the complete deletion of SWS1 are less well-understood. To assess the effects of SWS1 deficiency on retinal structure, we established and analyzed sws1-mutant medaka. Methods: To visualize SWS1, a monoclonal anti-SWS1 antibody and transgenic reporter fish (Tg(sws1:mem-egfp)) were generated. We also developed a CRISPR/Cas-driven sws1-mutant line. Retinal structure of sws1 mutant was visualized using anti-SWS1, 1D4, and ZPR1 antibodies and coumarin derivatives and compared with wild type, Tg(sws1:mem-egfp), and another opsin (lws) mutant. Results: Our rat monoclonal antibody specifically recognized medaka SWS1. Sws1 mutant retained regularly arranged cone mosaic as lws mutant and its SSCs had neither SWS1 nor long wavelength sensitive opsin. Depletion of sws1 did not affect the expression of long wavelength sensitive opsin, and vice versa. ZPR1 antibody recognized arrestin spread throughout double cones and long single cones in wild-type, transgenic, and sws1-mutant lines. Conclusions: Comparative observation of sws1-mutant and wild-type retinas revealed that ZPR1 negativity is not a marker for SSCs with SWS1, but SSCs themselves. Loss of functional sws1 did not cause retinal degeneration, indicating that sws1 is not essential for cone mosaic development in medaka. Our two fish lines, one with visualized SWS1 and the other lacking functional SWS1, offer an opportunity to study neural network synapsing with SSCs and to clarify the role of SWS1 in vision.


Assuntos
Opsinas , Oryzias , Células Fotorreceptoras Retinianas Cones , Animais , Opsinas/genética , Opsinas/metabolismo , Oryzias/genética , Oryzias/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Visão Ocular
19.
Gen Comp Endocrinol ; 173(2): 253-8, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21663743

RESUMO

The pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are essential for the control of vertebrate reproduction. Although the molecular structures of these two hormones are well conserved from teleosts to mammals, some studies report differences in their regulatory mechanisms of gene expression between teleosts and tetrapods. In the present study, we examined the molecular evolution of the gonadotropin gene loci in vertebrates and found that there is a syntenic conservation among the teleost fshb and tetrapod fshb and lhb loci. However, the teleost lhb locus has no syntenic homology to either tetrapod lhb or teleost fshb; this fact suggests that an extensive genome-wide rearrangement of the lhb locus, caused by an accelerated genome evolution speed after the third round of genome-wide duplication, occurred in the teleost lineage. We subsequently demonstrated by double labeling in situ hybridization using a teleost medaka that the fshb and lhb genes in teleosts are expressed in completely separate cellular populations in the pituitary, which is different in tetrapods. Furthermore, the expression analysis in ovariectomized and steroid-treated medaka revealed that, under breeding conditions, the expression of the medaka LHß was down-regulated by ovariectomy and recovered by treatment with gonadal steroids; this result is also completely opposite in mammals, where the steroids have negative-feedback effects on LHß expression. We suggest that these differences between teleosts and mammals in the cellular expression pattern and dynamic expressional changes of the lhb gene are the result of the drastic changes in the genomic environment of the lhb gene that occurred early in teleost evolution.


Assuntos
Peixes/genética , Gonadotropinas/genética , Hormônio Luteinizante/genética , Animais , Evolução Molecular , Hormônio Foliculoestimulante/genética , Hibridização In Situ , Oryzias/genética , Hipófise/metabolismo
20.
Sci Rep ; 11(1): 10894, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035352

RESUMO

Behavioral analysis plays an important role in wide variety of biological studies, but behavioral recordings often tend to be laborious and are associated with inevitable human-errors. It also takes much time to perform manual behavioral analyses while replaying the videos. On the other hand, presently available automated recording/analysis systems are often specialized for certain types of behavior of specific animals. Here, we established an open-source behavioral recording system using Raspberry Pi, which automatically performs video-recording and systematic file-sorting, and the behavioral recording can be performed more efficiently, without unintentional human operational errors. We also developed an Excel macro that enables us to easily perform behavioral annotation with simple manipulation. Thus, we succeeded in developing an analysis suite that mitigates human tasks and thus reduces human errors. By using this suite, we analyzed the sexual behavior of a laboratory and a wild medaka strain and found a difference in sexual motivation presumably resulting from domestication.


Assuntos
Motivação , Oryzias/fisiologia , Comportamento Sexual , Animais , Automação Laboratorial , Comportamento Animal/fisiologia , Interface Usuário-Computador , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA