Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 131(24)2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30404838

RESUMO

The Arf4-rhodopsin complex (mediated by the VxPx motif in rhodopsin) initiates expansion of vertebrate rod photoreceptor cilia-derived light-sensing organelles through stepwise assembly of a conserved trafficking network. Here, we examine its role in the sorting of VAMP7 (also known as TI-VAMP) - an R-SNARE possessing a regulatory longin domain (LD) - into rhodopsin transport carriers (RTCs). During RTC formation and trafficking, VAMP7 colocalizes with the ciliary cargo rhodopsin and interacts with the Rab11-Rabin8-Rab8 trafficking module. Rab11 and Rab8 bind the VAMP7 LD, whereas Rabin8 (also known as RAB3IP) interacts with the SNARE domain. The Arf/Rab11 effector FIP3 (also known as RAB11FIP3) regulates VAMP7 access to Rab11. At the ciliary base, VAMP7 forms a complex with the cognate SNAREs syntaxin 3 and SNAP-25. When expressed in transgenic animals, a GFP-VAMP7ΔLD fusion protein and a Y45E phosphomimetic mutant colocalize with endogenous VAMP7. The GFP-VAMP7-R150E mutant displays considerable localization defects that imply an important role of the R-SNARE motif in intracellular trafficking, rather than cognate SNARE pairing. Our study defines the link between VAMP7 and the ciliary targeting nexus that is conserved across diverse cell types, and contributes to general understanding of how functional Arf and Rab networks assemble SNAREs in membrane trafficking.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Cílios/metabolismo , Fusão de Membrana/fisiologia , Proteínas SNARE/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Organelas/metabolismo , Transporte Proteico/fisiologia , Proteínas R-SNARE/metabolismo , Rodopsina/metabolismo
2.
J Cell Sci ; 130(23): 3975-3987, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29025970

RESUMO

The small GTPase Arf4 and the Arf GTPase-activating protein (GAP) ASAP1 cooperatively sequester sensory receptor cargo into transport carriers targeted to primary cilia, but the input that drives Arf4 activation in this process remains unknown. Here, we show, by using frog retinas and recombinant human proteins, that during the carrier biogenesis from the photoreceptor Golgi/trans-Golgi network (TGN) a functional complex is formed between Arf4, the Arf guanine nucleotide exchange factor (GEF) GBF1 and the light-sensing receptor, rhodopsin. Rhodopsin and Arf4 bind the regulatory N-terminal dimerization and cyclophillin-binding (DCB)-homology upstream of Sec7 (HUS) domain of GBF1. The complex is sensitive to Golgicide A (GCA), a selective inhibitor of GBF1 that accordingly blocks rhodopsin delivery to the cilia, without disrupting the photoreceptor Golgi. The emergence of newly synthesized rhodopsin in the endomembrane system is essential for GBF1-Arf4 complex formation in vivo Notably, GBF1 interacts with the Arf GAP ASAP1 in a GCA-resistant manner. Our findings indicate that converging signals on GBF1 from the influx of cargo into the Golgi/TGN and the feedback from Arf4, combined with input from ASAP1, control Arf4 activation during sensory membrane trafficking to primary cilia.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Rodopsina/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Cílios/metabolismo , Transporte Proteico/fisiologia , Retina/metabolismo , Células Receptoras Sensoriais/metabolismo , Xenopus , Proteínas rab de Ligação ao GTP/metabolismo
3.
Hum Mol Genet ; 19(5): 861-78, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20015953

RESUMO

Biogenesis of lysosome-related organelles complex 1 (BLOC-1) is a protein complex formed by the products of eight distinct genes. Loss-of-function mutations in two of these genes, DTNBP1 and BLOC1S3, cause Hermansky-Pudlak syndrome, a human disorder characterized by defective biogenesis of lysosome-related organelles. In addition, haplotype variants within the same two genes have been postulated to increase the risk of developing schizophrenia. However, the molecular function of BLOC-1 remains unknown. Here, we have generated a fly model of BLOC-1 deficiency. Mutant flies lacking the conserved Blos1 subunit displayed eye pigmentation defects due to abnormal pigment granules, which are lysosome-related organelles, as well as abnormal glutamatergic transmission and behavior. Epistatic analyses revealed that BLOC-1 function in pigment granule biogenesis requires the activities of BLOC-2 and a putative Rab guanine-nucleotide-exchange factor named Claret. The eye pigmentation phenotype was modified by misexpression of proteins involved in intracellular protein trafficking; in particular, the phenotype was partially ameliorated by Rab11 and strongly enhanced by the clathrin-disassembly factor, Auxilin. These observations validate Drosophila melanogaster as a powerful model for the study of BLOC-1 function and its interactions with modifier genes.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/metabolismo , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Modelos Animais , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Organelas/metabolismo , Fenótipo
4.
J Cell Biol ; 173(3): 443-52, 2006 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-16682530

RESUMO

We have isolated mutations in the Drosophila melanogaster homologue of auxilin, a J-domain-containing protein known to cooperate with Hsc70 in the disassembly of clathrin coats from clathrin-coated vesicles in vitro. Consistent with this biochemical role, animals with reduced auxilin function exhibit genetic interactions with Hsc70 and clathrin. Interestingly, the auxilin mutations interact specifically with Notch and disrupt several Notch-mediated processes. Genetic evidence places auxilin function in the signal-sending cells, upstream of Notch receptor activation, suggesting that the relevant cargo for this auxilin-mediated endocytosis is the Notch ligand Delta. Indeed, the localization of Delta protein is disrupted in auxilin mutant tissues. Thus, our data suggest that auxilin is an integral component of the Notch signaling pathway, participating in the ubiquitin-dependent endocytosis of Delta. Furthermore, the fact that auxilin is required for Notch signaling suggests that ligand endocytosis in the signal-sending cells needs to proceed past coat disassembly to activate Notch.


Assuntos
Auxilinas/fisiologia , Drosophila melanogaster/fisiologia , Proteínas de Membrana/metabolismo , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Animais , Auxilinas/genética , Padronização Corporal/genética , Padronização Corporal/fisiologia , Clatrina/genética , Clatrina/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Endocitose/genética , Endocitose/fisiologia , Receptores ErbB/genética , Receptores ErbB/fisiologia , Anormalidades do Olho/genética , Anormalidades do Olho/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Microscopia Eletrônica de Varredura , Mutação/genética , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Fenótipo , Células Fotorreceptoras de Invertebrados/embriologia , Células Fotorreceptoras de Invertebrados/metabolismo , RNA Interferente Pequeno/genética , Receptores Notch/genética , Transdução de Sinais/genética , Asas de Animais/embriologia , Asas de Animais/metabolismo , Asas de Animais/ultraestrutura
5.
BMC Dev Biol ; 8: 50, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18466624

RESUMO

BACKGROUND: Ligand endocytosis plays a critical role in regulating the activity of the Notch pathway. The Drosophila homolog of auxilin (dAux), a J-domain-containing protein best known for its role in the disassembly of clathrin coats from clathrin-coated vesicles, has recently been implicated in Notch signaling, although its exact mechanism remains poorly understood. RESULTS: To understand the role of auxilin in Notch ligand endocytosis, we have analyzed several point mutations affecting specific domains of dAux. In agreement with previous work, analysis using these stronger dAux alleles shows that dAux is required for several Notch-dependent processes, and its function during Notch signaling is required in the signaling cells. In support of the genetic evidences, the level of Delta appears elevated in dAux deficient cells, suggesting that the endocytosis of Notch ligand is disrupted. Deletion analysis shows that the clathrin-binding motif and the J-domain, when over-expressed, are sufficient for rescuing dAux phenotypes, implying that the recruitment of Hsc70 to clathrin is a critical role for dAux. However, surface labeling experiment shows that, in dAux mutant cells, Delta accumulates at the cell surface. In dAux mutant cells, clathrin appears to form large aggregates, although Delta is not enriched in these aberrant clathrin-positive structures. CONCLUSION: Our data suggest that dAux mutations inhibit Notch ligand internalization at an early step during clathrin-mediated endocytosis, before the disassembly of clathrin-coated vesicles. Further, the inhibition of ligand endocytosis in dAux mutant cells possibly occurs due to depletion of cytosolic pools of clathrin via the formation of clathrin aggregates. Together, our observations argue that ligand endocytosis is critical for Notch signaling and auxilin participates in Notch signaling by facilitating ligand internalization.


Assuntos
Auxilinas/genética , Proteínas de Drosophila/genética , Drosophila/genética , Endocitose/genética , Proteínas de Membrana/genética , Receptores Notch/genética , Animais , Auxilinas/metabolismo , Vesículas Revestidas por Clatrina/genética , Vesículas Revestidas por Clatrina/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/metabolismo , Mutação , Células Fotorreceptoras de Invertebrados/metabolismo , Estrutura Terciária de Proteína , Receptores Notch/metabolismo , Transdução de Sinais
6.
J Cell Biol ; 201(3): 439-48, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23609534

RESUMO

In Drosophila peripheral neurogenesis, Notch controls cell fates in sensory organ precursor (SOP) cells. SOPs undergo asymmetric cell division by segregating Numb, which inhibits Notch signaling, into the pIIb daughter cell after cytokinesis. In contrast, in the pIIa daughter cell, Notch is activated and requires Sanpodo, but its mechanism of action has not been elucidated. As Sanpodo is present in both pIIa and pIIb cells, a second role for Sanpodo in regulating Notch signaling in the low-Notch pIIb cell has been proposed. Here we demonstrate that Sanpodo regulates Notch signaling levels in both pIIa and pIIb cells via distinct mechanisms. The interaction of Sanpodo with Presenilin, a component of the γ-secretase complex, was required for Notch activation and pIIa cell fate. In contrast, Sanpodo suppresses Notch signaling in the pIIb cell by driving Notch receptor internalization. Together, these results demonstrate that a single protein can regulate Notch signaling through distinct mechanisms to either promote or suppress signaling depending on the local cellular context.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Receptores Notch/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Endocitose , Mecanorreceptores/fisiologia , Proteínas dos Microfilamentos/fisiologia , Presenilinas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/metabolismo , Transporte Proteico , Células-Tronco/fisiologia
7.
Curr Opin Cell Biol ; 24(4): 534-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22818956

RESUMO

The Notch signaling pathway controls patterning and cell fate decisions during development in metazoans, and is associated with human diseases such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and certain cancers. Studies over the last several years have revealed sophisticated regulation of both the membrane-bound Notch receptor and its ligands by vesicle trafficking. This is perhaps most evident in neural progenitor cells in Drosophila, which divide asymmetrically to segregate Numb, an endocytic adaptor protein that acts as a Notch pathway inhibitor, to one daughter cell. Here, we discuss recent findings addressing how receptor and ligand trafficking to specific membrane compartments control activation of the Notch pathway in asymmetrically dividing cells and other tissues.


Assuntos
Endocitose , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Divisão Celular Assimétrica , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Humanos , Hormônios Juvenis/metabolismo , Ligantes , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transporte Proteico
8.
J Biol Chem ; 283(33): 22637-48, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18539592

RESUMO

CHD3 proteins are ATP-dependent chromatin remodelers that contribute to repression of developmentally regulated genes in both animal and plant systems. In animals, this repression has been linked to a multiple subunit complex, Mi-2/NuRD, whose constituents include a CHD3 protein, a histone deacetylase, and a methyl-CpG-binding domain protein. In Arabidopsis, PICKLE (PKL) codes for a CHD3 protein that acts during germination to repress expression of seed-associated genes. Repression of seed-associated traits is promoted in pkl seedlings by the plant growth regulator gibberellin (GA). We undertook a microarray analysis to determine how PKL and GA act to promote the transition from seed to seedling. We found that PKL and GA act in separate pathways to repress expression of seed-specific genes. Comparison of genomic datasets revealed that PKL-dependent genes are enriched for trimethylation of histone H3 lysine 27 (H3K27me3), a repressive epigenetic mark. Chromatin immunoprecipitation studies demonstrate that PKL promotes H3K27me3 in both germinating seedlings and in adult plants but do not identify a connection between PKL-dependent expression and acetylation levels. Taken together, our analyses illuminate a new pathway by which CHD3 remodelers contribute to repression in eukaryotes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Histona Desacetilases/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/efeitos dos fármacos , DNA Helicases , Regulação da Expressão Gênica de Plantas , Germinação , Metilação , Miconazol/farmacologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Sementes/genética , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA